Каждая химическая связь образуется парой электронов, поэтому при разрыве двух связей водород — кислород и образовании двух новых связей водород — углерод необходимо переместить 4 электрона. Опыт показывает, что для этого необходимо самое меньшее 8 квантов красного цвета, то есть по 2 кванта на каждый электрон. Поэтому истинное уравнение фотосинтеза имеет вид
СО2 4“ Н2О -Г 8/zv—>СНгО -Г О2.
Энергия красного кванта с длиной волны около 700 нм равна 1,8 эВ, а суммарная энергия 8 квантов 14,4 эВ. Одна треть этой энергии (около 5 эВ) запасается в виде энергии химических связей в молекулах глюкозы.
Когда мы пьем чай, то молекулы кислорода, захваченные гемоглобином, в присутствии ферментов соединяются с молекулами глюкозы в обратном процессе
СН2О+О2->Н2О + СО2, освобождая при этом энергию солнечного луча, запасенную хлорофиллом, которая, в конечном итоге, и сохраняет нашу жизнь. (Как говорил Герман Гельмгольц, зная это, каждый из нас «вправе наравне с самим китайским императором величать себя сыном Солнца».)
Простота уравнения фотосинтеза не должна нас обманывать: это не просто реакция, а сложный биохимический процесс, включающий в себя несколько стадий и десятки разнообразных реакций.
В листьях молекулы хлорофилла (их размер 10 А = = 10“7 см) упакованы в специальные структуры —
В хлоропластах молекулы хлорофилла объединены в ячейки (примерно по 300 молекул в каждой) вместе с другими пигментами, назначение которых — собирать свет и передавать его энергию на реакционный центр ячейки. Структура этого центра пока точно не установлена, но предполагают, что он представляет собой пару молекул хлорофилла а, специальным образом сцепленную с молекулами пигмента, которая поглощает красный свет с длиной волны около 700 нм. Энергия этих квантов (1,8 эВ) достаточна, чтобы оторвать
В действительности существует два типа реакционных центров: фотосистема I и фотосистема II. В фотосистеме I (реакционный центр Р7оо) при отщеплении электрона от хлорофилла
Фотосистема II включает в себя реакционный центр Рб8о, который поглощает красные лучи с длиной волны Л = 680 нм и использует их энергию для отрыва электронов от некоторой системы S, которая предположительно является белковым комплексом, содержащим атом марганца (Мп). Отдавая последовательно 4 электрона, он становится катализатором, в присутствии которого молекулы воды расщепляются на водород и кислород.
Обе стадии фотосинтеза — образование АТР и расщепление НгО—очень быстрые (10-9 с) и происходят только на свету. После них следует довольно длительная (0,05 с) стадия, не требующая света. Она включает около 20 реакций (так называемый цикл Кальвина), в которых протоны, используя энергию, накопленную в АТР, через цепочку промежуточных комплексов присоединяются к углероду углекислого газа и образуют с ним структурную единицу СН2О любой древесины. Эту стадию удалось изучить довольно подробно сравнительно недавно, в 1946—1951 гг., с помощью изотопа ,4С в лаборатории Мелвина Кальвина (Нобелевская премия 1961 г.). А двустадийность процесса фотосинтеза доказана только в 1D58 г.
Изучение фотосинтеза продолжается: усложняются решаемые задачи, изощреннее становится методика исследований и быстро растет объем накопленных фактов. Но как и тысячелетия назад, с восходом солнца растения продолжают свою молчаливую каждодневную работу: улавливают солнечный свет и консервируют его впрок. Так было не всегда: фотосинтез возник на Земле в процессе эволюции растений сравнительно недавно — около миллиарда лет
назад, когда кислорода в атмосфере было менее процента и почти вся она состояла из азота и углекислого газа. Это был решающий поворот эволюции, изменивший лицо Земли: простейшие сине-зеленые водоросли начали перерабатывать углекислоту в кислород, над планетой образовался озоновый слой, который и сейчас охраняет всё живое от губительного воздействия ультрафиолетовых лучей, жизнь под его защитой вышла из океанов на сушу, возникли животные и человек, которые теперь возвращают растениям свой долг, снабжая их углекислотой.