Это простое соотношение заслуживает пристального внимания. Дело в том, что оно
Линия | 1, А (измерено Ангстремом) | 1, А (вычислено Бальмером) | |
6562,10 | 6562,08 | 3 | |
4860,74 | 4860,8 | 4 | |
4340,1 | 4340,0 | 5 | |
4101,2 | 4101,3 | 6 |
В первом столбце приведены названия спектральных линий, данные им Фраунгофером, во втором — длины волн этих линий, которые незадолго перед этим тщательно измерил шведский физик Ионас Андерс Ангстрем (1814—1874). (Единица длины ангстрем названа в его честь.) В третьем столбце представлены длины волн, вычисленные по формуле Бальмера при целых числах
Иногда Бальмера изображают чудаковатым школьным учителем, который от нечего делать делил и умножал различные числа, пока случайно не набрел на простые связи между ними. Это неверно. Он был глубоко образованным человеком, писал статьи по разным вопросам проективной геометрии и постоянно возвращался к самым сложным проблемам теории познания. Например, в 1868 г. он опубликовал работу, в которой пытался выяснить соотношение между научными исследованиями и системами мировой философии. Сам он с юношеских лет находился под влиянием пифагорейцев с их учением о гармонии и мистической роли целых чисел в природе. Как и древние, Бальмер был убежден, что тайну единства всех наблюдаемых явлений следует искать в различных комбинациях целых чисел. Поэтому, когда его внимание привлек набор четко ограниченных спектральных линий, он подошел к этому явлению природы с уже готовой меркой. Его ожидания оправдались: оказалось, что длины волн спектральных линий связаны между собой простыми рациональными соотношениями.
С открытия Бальмера начинается целая эпоха в науке об атоме. По существу, вся теория атома начинается с его формулы. Тогда этого еще не знали, но, вероятно, почувствовали. Уже в 1886 г. Рунге заметил, что формула Бальмера становится прозрачнее, если ее записать не для длины волны X, а для частоты
А в 1890 г. шведский физик Иоганн Роберт Ридберг (1854— 1919) предложил записывать формулу в том виде, который она сохранила до сих пор:
Здесь
Тогда же возникла мысль записывать частоту в виде разности двух величин —
Пока что в такой записи не видно глубокого смысла, да и особых преимуществ тоже. Однако в 1908 г. молодой, рано умерший швейцарский ученый Вальтер Ритц (1878—1909) объяснил преимущества такой формы записи. Продолжая работы Ридберга, он сформулировал так называемый
любого атома можно представить как разность двух термов
даже в том случае, когда отдельный терм
На первый взгляд в этом нет никакого выигрыша: просто от набора частот мы перешли к набору термов. Однако это не так: попытайтесь прочесть книгу, в которой отсутствуют промежутки между словами, и вы сразу почувствуете разницу. Особенно если эта книга на неизвестном языке. Кроме того, чисел стало значительно меньше: чтобы определить частоты 50 линий водорода, которые были известны в начале века, достаточно знать десяток термов.
Неожиданно в хаосе чисел обнаружилась система. Беспорядочный набор линий распался на серии. В непонятной книге чисел стали различать отдельные слова. В простейшем случае — атома водорода — удалось разглядеть даже буквы, из которых они составлены. Однако смысл слов и происхождение букв по-прежнему оставались неизвестными: иероглифы спектральных линий еще не заговорили, хотя и не казались теперь столь загадочными. Стремление осмыслить структуру спектра и в самом деле напоминало попытки почти вслепую расшифровать незнакомый текст. Утомительная работа длилась больше четверти века, и отсутствие общей идеи отталкивало от нее глубокие умы. Необходимо было найти ключ к шифру.
Это сделал Нильс Бор в 1913 г.
Излучение возникает в результате процессов, происходящих в атоме, однако за его пределами существует независимо. Иногда оно состоит из волн одинаковой длины — такое излучение называют монохроматическим. Линейчатый спектр атома состоит из набора монохроматических волн, и наборы эти различны для разных атомов.