Читаем Под знаком кванта. полностью

усовершенствованного масс-спектрометра обнаружил редкий изотоп урана 23592U, причем оказалось, что природный уран на 99,28 % состоит из изотопа 23892U и лишь на 0,72 % — из изотопа 23592U. Бор предположил, что медленными нейтронами делится уран-235, а быстрые нейтроны, которые при этом делении испускаются, сразу же поглощаются ядрами урана-238, поэтому нейтронная вспышка гаснет, как спичка, брошенная в поленницу сырых дров. Альфред Нир (р. 1911 г.) и Джон Даннинг (1907—1975) подтвердят эту гипотезу Бора только через год, 1 марта 1940 г., но поверили в нее сразу и во всех дальнейших исследованиях принимали ее во внимание.

Сразу же встало три новых вопроса: Сколько нейтронов и с какой энергией вылетает из ядра изотопа урана-235 при каждом делении? Что происходит с ядрами изотопа урана-238 после захвата нейтрона? При каких условиях возможно осуществить незатухающую цепную ядерную реакцию в уране?

Ответ на первый вопрос уже в середине марта получили сразу четыре группы исследователей: Фредерик Жолио-Кюри, Хальбан и Коварски во Франции, Флеров и Русинов в России, Ферми, Андерсон и Ханштейн, а также Сцилард и Зинн в США. Оказалось, что при каждом делении ядра урана-235 испускается примерно два-три вторичных нейтрона со средней энергией 1,3 МэВ. (Точное число нейтронов деления ν=2,42, измеренное впоследствии, оставалось государственной тайной вплоть до 1950 г.)

При попытке ответить на второй вопрос вспомнили сразу одну из работ Мейтнер, Гана и Штрассмана. Еще в 1937 г., повторяя эксперименты группы Ферми, они заметили, что ядра урана особенно эффективно поглощают нейтроны с энергией 25 эВ (так тогда думали, в действительности — 6,8 эВ). Такое резонансное поглощение нейтронов всегда сопровождается β-активностью с периодом полураспада 23 мин, в отличие от случая поглощения медленных «тепловых» нейтронов с энергией 0,04 эВ, когда наблюдается сложная смесь различных периодов полураспада. Теперь причина такого различия прояснилась: уран-235 наиболее эффективно делится медленными нейтронами (его сечение деления велико), и образующиеся в этом случае продукты деления имеют различные периоды полураспада. Напротив, при энергии нейтронов в несколько электрон-вольт сечение резонансного поглощения ураном-238 значительно превышает сечение деления урана-235, поэтому основным процессом является превращение урана-238 в нептуний-238 путем β-распада.

Таким образом, чтобы цепная реакция стала возможной, необходим замедлитель нейтронов, который должен, во-первых, уменьшить их энергию в 10 миллионов раз — от 1 МэВ, с которой они вылетают при делении ядра урана-235, до энергии 0,1 эВ — и, во-вторых, осуществить это так быстро, чтобы нейтроны успели замедлиться до того, как они столкнутся с ядром урана-238. Наконец, сам замедлитель не должен поглощать нейтроны, то есть сечение захвата им нейтронов должно быть очень малым.

Наиболее эффективно замедляет нейтроны водород (это хорошо помнили после опытов Ферми 1934 г.), но, к несчастью, оказалось, что он сильно их поглощает: сечение реакции

в которой при столкновении нейтрона с протоном образуется тяжелый изотоп водорода дейтерий и испускается γ-квант, равно σ = 0,33 барн. Это значительно меньше, чем сечение резонансного захвата в уране-238, равное ≈10 000 барн, но все-таки слишком много.

Летом 1939 г. советские теоретики Яков Борисович Зельдович и Юлий Борисович Харитон проделали первый расчет кинетики цепной реакции деления в растворе урана с водой. Их выводы были неутешительными: такой гомогенный ядерный реактор будет работать только в том случае, если концентрацию изотопа урана-235 повысить до 2,5 % вместо тех 0,72 %, которые присутствуют в любом образце природного урана.

Так возникла первая большая проблема атомной энергетики: разделение изотопов урана. Вначале ее считали настолько неприступной, что в течение двух лет о ней практически не думали. В самом деле, казалось невероятным, что когда-нибудь удастся разделить химически совершенно идентичные атомы изотопов урана, массы ядер которых различаются всего на полтора процента. Но война меняет представления о границах возможного: уже в 1944 г. были построены и работали заводы по разделению изотопов урана — огромные четырехэтажные корпуса шириной в полкилометра и в километр длиной, потреблявшие энергию электростанции, равной по мощности Днепрогэсу. Технологические детали этого процесса до сих пор хранятся в секрете, но его идея — метод газовой диффузии — хорошо известна.

Перейти на страницу:

Похожие книги

Доказательная медицина. Что, когда и зачем принимать
Доказательная медицина. Что, когда и зачем принимать

Доказательная медицина – термин широко известный, даже очень. А все широко известное, уйдя в народ, наполняется новым, подчас неожиданным, смыслом. Одни уверены, что доказательная медицина – это юридический термин. Другие считают доказательной всю официальную медицину в целом, что не совсем верно. Третьи знают из надежных источников, что никакой доказательной медицины на деле не существует, это выдумка фармацевтических корпораций, помогающая им продвигать свою продукцию. Вариантов много… На самом деле доказательная медицина – это не отрасль и не выдумка, а подход или, если хотите, принцип. Согласно этому принципу, все, что используется в профилактических, лечебных и диагностических целях, должно быть эффективным и безопасным, причем оба этих качества нужно подтвердить при помощи достоверных доказательств. Доказательная медицина – это медицина, основанная на доказательствах. Эта книга поможет разобраться как с понятием доказательной медицины, так и с тем, какие методы исследования помогают доказать эффективность препарата или способа лечения. Ведь и в традиционной, официальной, полностью научной медицине есть куча проблем с подтверждением эффективности и безопасности. Правильное клиническое исследование должно быть прозрачным и полностью объективным. На этих двух столпах стоит доказательная медицина. А эти столпы опираются на фундамент под названием «эксперимент».

Кирилл Галанкин

Научная литература / Научно-популярная литература / Образование и наука
Достучаться до небес. Научный взгляд на устройство Вселенной
Достучаться до небес. Научный взгляд на устройство Вселенной

Человечество стоит на пороге нового понимания мира и своего места во Вселенной - считает авторитетный американский ученый, профессор физики Гарвардского университета Лиза Рэндалл, и приглашает нас в увлекательное путешествие по просторам истории научных открытий. Особое место в книге отведено новейшим и самым значимым разработкам в физике элементарных частиц; обстоятельствам создания и принципам действия Большого адронного коллайдера, к которому приковано внимание всего мира; дискуссии между конкурирующими точками зрения на место человека в универсуме. Содержательный и вместе с тем доходчивый рассказ знакомит читателя со свежими научными идеями и достижениями, шаг за шагом приближающими человека к пониманию устройства мироздания.

Лиза Рэндалл

Научная литература