Читаем Под знаком кванта. полностью

8Ве* + 4Не-+12С*.

Возбужденное ядро 12С* живет недолго — всего 10-12 с и, испуская γ-кванты или электронно-позитронную пару, переходит в основное состояние.

Но этого времени оказывается достаточно, чтобы успело произойти необратимое объединение трех α-частиц.

При температурах Т≥108 К кинетическая энергия α-частиц (0,02 МэВ) в гелиевой звезде значительно меньше энергии 0,38 МэВ, при которой выполняется условие резонанса для реакции 8Ве* + 4Не→12С*. Однако в недрах такой звезды всегда существует незначительная примесь очень быстрых частиц (10-9, примерно одна частица на миллиард), для которых это условие выполнено, и этого оказывается достаточно, чтобы осуществить последовательность реакций 3α-процесса

4Не + 4Не→8Ве*,

8Be* + 4He→12C*→I2C + γ

со скоростью в тысячу раз большей, чем горение водорода.

3α-процесс был предсказан в 1952 г. американским теоретиком Эдвином Эрнестом Солпитером (р. 1924 г.) и лишь впоследствии подтвержден всей совокупностью наблюдаемых данных. Теперь он исследован во всех деталях, но не стал от этого менее удивительным: ведь если бы массы ядер гелия и углерода отличались от действительных всего на 0,1 %, то редкое сочетание сразу двух резонансов в 3α-процессе было бы разрушено и условия нуклеосинтеза в звездах были бы иными.

Углерод — основа всех живых организмов и одно из самых привычных и необходимых веществ на Земле. Но только теперь становится ясным, от каких тонких особенностей структуры ядер и случайностей их сочетания зависит в конечном итоге и сама жизнь, и ее разумная разновидность, способная понять и оценить их смысл.

После образования углерода в гелиевом ядре звезды происходит образование других элементов: кислорода, неона и магния:

12C + 4Не→16О + γ,

16O + 4He→20Ne + γ,

20Ne + 4He→24Mg + γ.

К моменту образования магния весь гелий в звезде истощается, и, чтобы стали возможными дальнейшие ядерные реакции, необходимо новое сжатие звезды и повышение ее температуры. Это, однако, возможно не для всех звезд, а лишь для достаточно больших, масса которых превышает так называемый чандрасекаровский предел М = 1,2 Mʘ, то есть для звезд с массой, по крайней мере на 20 % превышающей массу Солнца Mʘ. (Существование такого предела установил еще в 30-х годах индийский ученый Субраманьян Чандрасекар (р. 1910 г.).)

Звезды с массами М < 1,2Mʘ заканчивают свою эволюцию на стадии образования магния и превращаются в белые карлики — звезды с массой около 0,6Mʘ, размером с нашу Землю и плотностью около тонны в кубическом сантиметре. В белых карликах электроны отделены от ядер, так что вся звезда представляет собой единый кристалл, свойства которого можно описать только с помощью уравнений квантовой механики, используя, в частности, и знаменитый принцип Паули, запрещающий двум электронам иметь одинаковые квантовые числа. Теорию белых карликов построил уже в 1926 г. Ральф Говард Фаулер (1889—1944).

В более массивных звездах при температурах 5∙108 — 109 градусов происходит синтез кремния в реакциях:

24Mg + 4He → 28Si + γ,

16О+16О→28Si+α.

После очередного этапа гравитационного сжатия температура повышается до 2 млрд. градусов и средняя энергия излучаемых гамма-квантов достигает 0,2 МэВ, при которой они способны разрушать ядра кремния на α-частицы:

28Si+γ→74He.

Эти α-частицы затем последовательно вдавливаются в ядра кремния, образуя более тяжелые элементы — вплоть до железа. На этом источники ядерной энергии внутри звезды истощаются, поскольку образование более тяжелых элементов идет не с выделением, а с затратой энергии: эволюция звездного вещества вступает в новую фазу.

Теперь ядерные реакции идут на поверхности железной сердцевины звезды, где еще сохранились несгоревшие ядра 4Не, 12С, 20Ne, а также небольшое количество водорода. В некоторых из этих реакций возникают свободные нейтроны, которые поглощаются ядрами железа, и — точно так же, как в опытах Ферми,— после β-распада нейтрона образуется новое ядро со следующим порядковым номером, то есть ядро кобальта:

58Fe + n→59Fe*→59Co + е + ˜v.

Таким же образом из кобальта образуется никель, из никеля — медь и т. д., вплоть до изотопа висмута 209Вi.

На этом возможности s-процесса (slow — медленный) образования химических элементов исчерпываются, и все элементы тяжелее висмута образуются в r-процессе (rapid — быстрый), при взрывах звезд.

Такой взрыв становится возможным, если масса звезды достаточно велика для того, чтобы силы тяготения смогли сжать и нагреть ее железную сердцевину до 4 млрд. градусов и выше. В этих условиях каждое ядро железа 56Fe распадается на 13 α-частиц и 4 нейтрона, поглощая при этом 124 МэВ энергии. Сердцевина звезды охлаждается и начинает катастрофически сжиматься под действием сил тяготения, которые теперь уже не сдерживаются давлением излучения. Происходит имплозия, взрыв внутрь, коллапс звезды. При этом вначале α-частицы разваливаются на протоны и нейтроны, а затем электроны вдавливаются в протоны, образуя нейтроны и испуская нейтрино:

р + е→ n+v.

Перейти на страницу:

Похожие книги

Доказательная медицина. Что, когда и зачем принимать
Доказательная медицина. Что, когда и зачем принимать

Доказательная медицина – термин широко известный, даже очень. А все широко известное, уйдя в народ, наполняется новым, подчас неожиданным, смыслом. Одни уверены, что доказательная медицина – это юридический термин. Другие считают доказательной всю официальную медицину в целом, что не совсем верно. Третьи знают из надежных источников, что никакой доказательной медицины на деле не существует, это выдумка фармацевтических корпораций, помогающая им продвигать свою продукцию. Вариантов много… На самом деле доказательная медицина – это не отрасль и не выдумка, а подход или, если хотите, принцип. Согласно этому принципу, все, что используется в профилактических, лечебных и диагностических целях, должно быть эффективным и безопасным, причем оба этих качества нужно подтвердить при помощи достоверных доказательств. Доказательная медицина – это медицина, основанная на доказательствах. Эта книга поможет разобраться как с понятием доказательной медицины, так и с тем, какие методы исследования помогают доказать эффективность препарата или способа лечения. Ведь и в традиционной, официальной, полностью научной медицине есть куча проблем с подтверждением эффективности и безопасности. Правильное клиническое исследование должно быть прозрачным и полностью объективным. На этих двух столпах стоит доказательная медицина. А эти столпы опираются на фундамент под названием «эксперимент».

Кирилл Галанкин

Научная литература / Научно-популярная литература / Образование и наука
Достучаться до небес. Научный взгляд на устройство Вселенной
Достучаться до небес. Научный взгляд на устройство Вселенной

Человечество стоит на пороге нового понимания мира и своего места во Вселенной - считает авторитетный американский ученый, профессор физики Гарвардского университета Лиза Рэндалл, и приглашает нас в увлекательное путешествие по просторам истории научных открытий. Особое место в книге отведено новейшим и самым значимым разработкам в физике элементарных частиц; обстоятельствам создания и принципам действия Большого адронного коллайдера, к которому приковано внимание всего мира; дискуссии между конкурирующими точками зрения на место человека в универсуме. Содержательный и вместе с тем доходчивый рассказ знакомит читателя со свежими научными идеями и достижениями, шаг за шагом приближающими человека к пониманию устройства мироздания.

Лиза Рэндалл

Научная литература