Читаем Под знаком кванта. полностью

«Изучая четвертое, лучистое состояние материи, мы, как мне кажется, имеем под руками и в сфере наших исследований те первичные атомы материи, из которых, как вполне основательно предполагают, состоят все тела природы. Мы видим, что лучистая материя по одним своим свойствам так же материальна, как вот этот стол, по другим — она скорее похожа на лучистую энергию. Мы действительно коснулись той пограничной области, где материя и энергия переходят друг в друга. Я думаю, что величайшие задачи будущего найдут свое разрешение именно в этой пограничной области; более того, здесь, как мне кажется, лежит граница всего реального мира».

Чтобы оценить смелость Крукса, надо вспомнить, что в то время весь мир разделяли на материю и эфир и при этом противопоставляли их друг другу: с материей отождествляли частицы, а с эфиром — среду, колебания которой мы воспринимаем как лучи света. Таким образом, «лучистая материя» Крукса должна была совмещать в себе свойства несовместимые: волны и частицы. Через полстолетия все могли убедиться, насколько он был прав, но в то время (по словам Оливера Лоджа — современника и соотечественника Крукса) «предположение Крукса имело судьбу тех проблесков мысли, которые иногда разрешаются авторам, но подвергаются насмешкам со стороны ортодоксальной науки их времени».

Независимо от смысла, который Крукс вкладывал в понятие «лучистая материя», он бесспорными опытами обнаружил у нее такие свойства: она распространяется прямолинейно; вызывает свечение тел и может их даже расплавить; отклоняется в электрическом и магнитных полях; проникает сквозь твердые тела, а в воздухе проходит путь 7 см, в то время как атомы — только 0,002 см. Опираясь на эти факты, Уильям Крукс утверждал: катодные лучи, или «лучистая материя»,— это поток быстрых отрицательных частиц, размер которых значительно меньше размеров атомов. Легко убедиться, что одна эта гипотеза проясняла все свойства катодных лучей. В частности, таким способом можно было легко объяснить появление темного пространства у катода: его размер определялся просто средним расстоянием, которое пролетают электроны, не сталкиваясь с атомами газа. Очевидно, это расстояние растет по мере выкачивания газа из трубки. Но главное значение гипотезы в другом: именно она стала той руководящей идеей, которая позволила почувствовать себя устойчиво в море фактов, накопленных к тому времени.

Физики знали теперь, куда идти и что искать: необходимо было выделить этот гипотетический «атом электричества» и определить его свойства: заряд, массу и размеры.

На это понадобилось почти 20 лет и усилия таких больших физиков, как Джозеф Джон Томсон (1856—1940), Джон Таунсенд (1868—1957), Вильгельм Вин (1864—1928), Джордж Фитцджеральд (1851 —1901), Эмиль Вихерт (1861 — 1928), Жан Перрен (1870—1942), Роберт Эндрюс Милликен (1868—1953). У нас нет возможности рассказать сейчас об остроумии и тонкости опытов, которые придумали эти и многие другие ученые. Поэтому проследим просто, как гипотетический «атом электричества» обретал постепенно реальные свойства, пока не стал, наконец, основой физики.

Прежде всего, Жан Перрен в 1895 г. окончательно доказал: заряд катодных лучей отрицателен. В течение последующих двух лет выяснили: их скорость равна около одной десятой скорости света, то есть примерно в 10 тыс. раз больше скорости ружейной пули и скорости теплового движения атомов. Кроме того, эти и все остальные их свойства не зависят от состава газа в трубке. А это означало, что катодные частицы — непременная составная часть всех атомов. И, наконец, в 1897 г. Дж. Дж. Томсону удалось определить заряд е и массу m отдельного «атома электричества»: оказалось, что масса этих частиц примерно в тысячу раз меньше массы атома водорода, а заряд равен заряду иона водорода, измеренному при изучении явления электролиза.

Это было неожиданно. Посудите сами: явления электролиза и проводимости газов изучали разные науки, которые развивались независимо друг от друга, и в них на протяжении десятилетий сформировались свои понятия. И вдруг они оказались тесно связанными. «Такие факты в истории науки,— говорил ученик Планка, лауреат Нобелевской премии по физике Макс Лауэ,— самое сильное доказательство ее истинности». Для физиков это всегда праздник.

История электрона — хороший способ усвоить логику открытий нынешней физики: исходя из наблюдений, ученые выдвигают на их основе гипотезы, которые вновь проверяют опытом, и, наконец, процесс этот завершается теорией, то есть сжатым объяснением частных явлений на основе немногих общих принципов.

Гипотеза об электроне возникла из наблюдений Фарадея, Плюккера и Крукса. Плодотворность ее была проверена и доказана в опытах Дж. Дж. Томсона и других физиков. И, наконец, Гендрик Антон Лоренц (1853—1928) настолько поверил в реальность электрона, что создал на основе этой гипотезы теорию, следствия из которой вновь можно было проверить. Процесс этот беспределен, но это — единственный способ движения науки.

Перейти на страницу:

Похожие книги

Доказательная медицина. Что, когда и зачем принимать
Доказательная медицина. Что, когда и зачем принимать

Доказательная медицина – термин широко известный, даже очень. А все широко известное, уйдя в народ, наполняется новым, подчас неожиданным, смыслом. Одни уверены, что доказательная медицина – это юридический термин. Другие считают доказательной всю официальную медицину в целом, что не совсем верно. Третьи знают из надежных источников, что никакой доказательной медицины на деле не существует, это выдумка фармацевтических корпораций, помогающая им продвигать свою продукцию. Вариантов много… На самом деле доказательная медицина – это не отрасль и не выдумка, а подход или, если хотите, принцип. Согласно этому принципу, все, что используется в профилактических, лечебных и диагностических целях, должно быть эффективным и безопасным, причем оба этих качества нужно подтвердить при помощи достоверных доказательств. Доказательная медицина – это медицина, основанная на доказательствах. Эта книга поможет разобраться как с понятием доказательной медицины, так и с тем, какие методы исследования помогают доказать эффективность препарата или способа лечения. Ведь и в традиционной, официальной, полностью научной медицине есть куча проблем с подтверждением эффективности и безопасности. Правильное клиническое исследование должно быть прозрачным и полностью объективным. На этих двух столпах стоит доказательная медицина. А эти столпы опираются на фундамент под названием «эксперимент».

Кирилл Галанкин

Научная литература / Научно-популярная литература / Образование и наука
Достучаться до небес. Научный взгляд на устройство Вселенной
Достучаться до небес. Научный взгляд на устройство Вселенной

Человечество стоит на пороге нового понимания мира и своего места во Вселенной - считает авторитетный американский ученый, профессор физики Гарвардского университета Лиза Рэндалл, и приглашает нас в увлекательное путешествие по просторам истории научных открытий. Особое место в книге отведено новейшим и самым значимым разработкам в физике элементарных частиц; обстоятельствам создания и принципам действия Большого адронного коллайдера, к которому приковано внимание всего мира; дискуссии между конкурирующими точками зрения на место человека в универсуме. Содержательный и вместе с тем доходчивый рассказ знакомит читателя со свежими научными идеями и достижениями, шаг за шагом приближающими человека к пониманию устройства мироздания.

Лиза Рэндалл

Научная литература