Читаем Под знаком кванта. полностью

Причину инстинктивного сопротивления, которое мы испытываем при первом знакомстве с соотношением неопределенностей, объяснил Гейзенберг. Для этого ему пришлось отбросить еще одну идеализацию классической физики — понятие наблюдения: оказалось, что в квантовой механике его нужно пересмотреть — точно так же, как и понятие движения.

Подавляющую часть своих знаний о мире человек приобретает с помощью зрения. Эта особенность восприятия человека определила всю его систему познания: почти у каждого слово «наблюдение» вызывает в сознании образ внимательно глядящего человека. Когда вы смотрите на собеседника, то абсолютно уверены, что от вашего взгляда ни один волос не упадет с его головы, даже если вы смотрите пристально и у вас «тяжелый взгляд». В сущности, именно на этой уверенности основано понятие наблюдения в классической механике. Она выросла из астрономии и, поскольку никто не сомневался, что, наблюдая звезду, мы никак на нее не воздействуем, то в этом не усомнились и в случае других наблюдений.

Понятия «явление», «измерение» и «наблюдение» тесно связаны между собой, но не совпадают. Древние наблюдали явления — в этом состоял их метод изучения природы. Из своих пристальных наблюдений они затем извлекали следствия с помощью чистого умозрения. По-видимому, с тех пор укоренилась уверенность, что явление существует независимо от наблюдения.

Мы много раз подчеркивали главное отличие нынешней физики от античной: она заменила умозрение опытом. Теперешняя физика не отрицает, что явления в природе существуют независимо от наблюдения (так же, как и от нашего сознания). Но она утверждает: объектом наблюдения эти явления становятся лишь тогда, когда мы укажем точный способ измерения их свойств. В физике понятия «наблюдение» и «измерение» неразделимы.

Всякое измерение есть взаимодействие прибора и объекта, который мы изучаем. А всякое взаимодействие нарушает первоначальное состояние и прибора, и объекта — так что в результате измерения мы получаем о явлении сведения, которые искажены вмешательством прибора. Классическая физика предполагала, что все подобные искажения можно учесть и по результатам измерения восстановить «истинное» состояние объекта, независимое от измерений. Гейзенберг показал, что такое предположение есть заблуждение: в атомной физике «явление» и «наблюдение» неотделимы друг от друга. По существу, «наблюдение» — тоже явление, и далеко не самое простое.

Как и многое в квантовой механике, такое утверждение непривычно и вызывает бессознательный протест. И все же попытаемся его понять или хотя бы почувствовать.

Ежедневный опыт убеждает нас: чем меньше объект, который мы исследуем, тем легче нарушить его состояние. Ничего меньше квантовых объектов — атома, электрона, ядра — мы в природе не знаем. Определить их свойства усилием воли мы не можем. В конце концов, мы вынуждены измерять свойства этих объектов с помощью их самих. В таких условиях прибор неотличим от объекта.

Но почему нельзя добиться, чтобы в процессе измерения один атомный объект лишь незначительно влиял на другой?

Дело в том, что оба они — и прибор, и объект — находятся в одном и том же квантовом мире и поэтому их взаимодействие подчиняется квантовым законам. А главная особенность квантовых явлений — их дискретность. В квантовом мире ничего не бывает чуть-чуть — взаимодействия там происходят только квантом: или — все, или — ничего. Мы не можем как угодно слабо воздействовать на квантовую систему — до определенного момента она этого воздействия вообще не почувствует. Но коль скоро воздействие выросло настолько, что система готова его воспринять,— она скачком переходит в новое (тоже квантовое) состояние или же просто гибнет.

Процесс наблюдения в квантовой механике напоминает скорее вкус, чем зрение. «Для того чтобы узнать свойства пудинга, его необходимо съесть»,— любили повторять создатели квантовой механики. И подобно тому как, съев однажды пудинг, мы не в состоянии еще раз проверить свое впечатление о его достоинствах, мы не можем беспредельно уточнять наши сведения о квантовой системе: ее разрушит, как правило, уже первое измерение. Гейзенберг не только понял впервые этот суровый факт, но и сумел записать его на строгом языке формул.

Перейти на страницу:

Похожие книги

Доказательная медицина. Что, когда и зачем принимать
Доказательная медицина. Что, когда и зачем принимать

Доказательная медицина – термин широко известный, даже очень. А все широко известное, уйдя в народ, наполняется новым, подчас неожиданным, смыслом. Одни уверены, что доказательная медицина – это юридический термин. Другие считают доказательной всю официальную медицину в целом, что не совсем верно. Третьи знают из надежных источников, что никакой доказательной медицины на деле не существует, это выдумка фармацевтических корпораций, помогающая им продвигать свою продукцию. Вариантов много… На самом деле доказательная медицина – это не отрасль и не выдумка, а подход или, если хотите, принцип. Согласно этому принципу, все, что используется в профилактических, лечебных и диагностических целях, должно быть эффективным и безопасным, причем оба этих качества нужно подтвердить при помощи достоверных доказательств. Доказательная медицина – это медицина, основанная на доказательствах. Эта книга поможет разобраться как с понятием доказательной медицины, так и с тем, какие методы исследования помогают доказать эффективность препарата или способа лечения. Ведь и в традиционной, официальной, полностью научной медицине есть куча проблем с подтверждением эффективности и безопасности. Правильное клиническое исследование должно быть прозрачным и полностью объективным. На этих двух столпах стоит доказательная медицина. А эти столпы опираются на фундамент под названием «эксперимент».

Кирилл Галанкин

Научная литература / Научно-популярная литература / Образование и наука
Достучаться до небес. Научный взгляд на устройство Вселенной
Достучаться до небес. Научный взгляд на устройство Вселенной

Человечество стоит на пороге нового понимания мира и своего места во Вселенной - считает авторитетный американский ученый, профессор физики Гарвардского университета Лиза Рэндалл, и приглашает нас в увлекательное путешествие по просторам истории научных открытий. Особое место в книге отведено новейшим и самым значимым разработкам в физике элементарных частиц; обстоятельствам создания и принципам действия Большого адронного коллайдера, к которому приковано внимание всего мира; дискуссии между конкурирующими точками зрения на место человека в универсуме. Содержательный и вместе с тем доходчивый рассказ знакомит читателя со свежими научными идеями и достижениями, шаг за шагом приближающими человека к пониманию устройства мироздания.

Лиза Рэндалл

Научная литература