Читаем Под знаком кванта. полностью

Сами по себе понятия «волна» и «частица», «состояние» и «наблюдение системы» суть некие идеализации, равно необходимые для понимания квантового мира. Классические картины дополнительны в том смысле, что для полного описания сущности квантовых явлений необходимо их гармоническое сочетание. Однако в рамках привычной логики они могут сосуществовать без противоречий лишь в том случае, если области их применимости взаимно ограничены.

Много размышляя над этими и другими похожими проблемами, Бор пришел к выводу, что это не исключение, а общее правило: всякое истинно глубокое явление природы не может быть определено однозначно с помощью слов нашего языка и требует для своего определения по крайней мере двух взаимоисключающих дополнительных понятий. Это означает, что при условии сохранения нашего языка и привычной логики мышление в форме дополнительности ставит пределы точной формулировке понятий, соответствующих истинно глубоким явлениям природы. Такие определения либо однозначны, но не полны, либо полны, но тогда неоднозначны, поскольку включают в себя дополнительные понятия, несовместимые в рамках обычной логики. К таким понятиям относятся понятия «жизнь», «квантовый объект», «физическая система» и даже само понятие «познание природы».

С давних пор известно, что наука — это лишь один из способов изучить окружающий мир. Другой, дополнительный способ воплощен в искусстве. Само совместное существование искусства и науки — одна из иллюстраций принципа дополнительности. Можно полностью уйти в науку или всецело жить искусством — оба эти подхода к жизни одинаково правомерны, хотя, взятые по отдельности, и не полны. Стержень науки — логика и опыт. Основа искусства — интуиция и прозрение. Но искусство балета требует математической точности, а «вдохновение в геометрии столь же необходимо, как и в поэзии». Они не противоречат, а дополняют друг друга: истинная наука сродни искусству — точно так же, как настоящее искусство всегда включает в себя элементы науки. В высших своих проявлениях они неразличимы и неразделимы, как свойства «волна — частица» в атоме. Они отражают разные, дополнительные стороны человеческого опыта и лишь взятые вместе дают нам полное представление о мире. Неизвестно только, к сожалению, «соотношение неопределенностей» для сопряженной пары понятий «наука — искусство», а потому и степень ущерба, который мы терпим при одностороннем восприятии жизни.

Конечно, приведенная аналогия, как и любая аналогия, и неполна и нестрога. Она лишь помогает почувствовать единство и противоречивость всей системы человеческих знаний.

ВОКРУГ КВАНТА

Дуализм и неопределенность

В пору становления квантовой механики даже хорошие физики с горечью шутили, что теперь им приходится по понедельникам, средам и пятницам представлять электрон частицей, а в остальные дни — волной. Нильс Бор с присущим ему юмором в 1924 г. говорил: «Даже если Эйнштейн пришлет мне телеграмму с сообщением об окончательном доказательстве реальности световых квантов, то и тогда она дойдет до меня только благодаря существованию радиоволн».

«Это в высшей степени парадоксально и способно привести в замешательство,— писал Дэвиссон в своей знаменитой статье 1928 г. с характерным названием «Существуют ли электронные волны?» — Мы должны поверить не только в то, что в определенном смысле кролики суть кошки, но также в то, что в неком смысле кошки суть кролики».

Такой способ мышления приводил к множеству парадоксов, от которых мы будем избавлены, если сразу же заставим себя не разделять в электроне свойства «волна — частица». Только после этого соотношение неопределенностей Гейзенберга перестанет быть чем-то странным и превратится в простое следствие корпускулярно-волнового дуализма.

В волновой оптике давно знали, что ни в какой микроскоп нельзя разглядеть частицу, если ее размеры меньше чем половина длины волны света, которым она освещена. В этом не видели ничего странного: волны света существуют сами по себе, частица — сама по себе. Но когда выяснилось, что частице тоже можно приписать длину волны, тогда это утверждение волновой оптики превратилось в соотношение неопределенностей: не может частица сама себя локализовать точнее, чем на половине длины своей волны.

Поэты и принцип дополнительности

Перейти на страницу:

Похожие книги

Доказательная медицина. Что, когда и зачем принимать
Доказательная медицина. Что, когда и зачем принимать

Доказательная медицина – термин широко известный, даже очень. А все широко известное, уйдя в народ, наполняется новым, подчас неожиданным, смыслом. Одни уверены, что доказательная медицина – это юридический термин. Другие считают доказательной всю официальную медицину в целом, что не совсем верно. Третьи знают из надежных источников, что никакой доказательной медицины на деле не существует, это выдумка фармацевтических корпораций, помогающая им продвигать свою продукцию. Вариантов много… На самом деле доказательная медицина – это не отрасль и не выдумка, а подход или, если хотите, принцип. Согласно этому принципу, все, что используется в профилактических, лечебных и диагностических целях, должно быть эффективным и безопасным, причем оба этих качества нужно подтвердить при помощи достоверных доказательств. Доказательная медицина – это медицина, основанная на доказательствах. Эта книга поможет разобраться как с понятием доказательной медицины, так и с тем, какие методы исследования помогают доказать эффективность препарата или способа лечения. Ведь и в традиционной, официальной, полностью научной медицине есть куча проблем с подтверждением эффективности и безопасности. Правильное клиническое исследование должно быть прозрачным и полностью объективным. На этих двух столпах стоит доказательная медицина. А эти столпы опираются на фундамент под названием «эксперимент».

Кирилл Галанкин

Научная литература / Научно-популярная литература / Образование и наука
Достучаться до небес. Научный взгляд на устройство Вселенной
Достучаться до небес. Научный взгляд на устройство Вселенной

Человечество стоит на пороге нового понимания мира и своего места во Вселенной - считает авторитетный американский ученый, профессор физики Гарвардского университета Лиза Рэндалл, и приглашает нас в увлекательное путешествие по просторам истории научных открытий. Особое место в книге отведено новейшим и самым значимым разработкам в физике элементарных частиц; обстоятельствам создания и принципам действия Большого адронного коллайдера, к которому приковано внимание всего мира; дискуссии между конкурирующими точками зрения на место человека в универсуме. Содержательный и вместе с тем доходчивый рассказ знакомит читателя со свежими научными идеями и достижениями, шаг за шагом приближающими человека к пониманию устройства мироздания.

Лиза Рэндалл

Научная литература