Читаем Под знаком кванта. полностью

Той же осенью Борн уехал в длительную командировку в Америку и во время пребывания там зимой 1926 г. совместно с Норбертом Винером — будущим создателем кибернетики — ввел одно из самых важных понятий квантовой механики — понятие оператора физической величины, который, в частности, может быть представлен и матрицей, как в схеме Гейзенберга.

Той же зимой Вольфганг Паули с помощью матричной механики нашел энергии уровней атома водорода и показал, что они совпадают с энергиями стационарных состояний в модели атома Бора.

Годом раньше, 29 ноября 1924 г., Луи де Бройль защитил диссертацию «Исследования по теории квантов». В 1910 г. он получил в Сорбонне звание лиценциата литературы по разделу истории, однако под влиянием брата, лекций Ланжевена по теории относительности и чтения книг Пуанкаре «Наука и гипотеза», «Ценность науки» он со всем пылом юности отдался изучению физики.

Брат Луи де Бройля Морис был признанным специалистом в физике рентгеновских лучей и много думал над их природой. Он был согласен с Уильямом Брэггом, который еще в 1912 г., сразу после открытия Лауэ и за 10 лет до опыта Комптона, писал: «Проблема теперь состоит не в том, чтобы выбрать между двумя теориями рентгеновских лучей, а в том, чтобы найти... одну теорию, обладающую возможностями обеих». В 1963 г. Луи де Бройль вспоминал: «Мой брат считал рентгеновские лучи некой комбинацией волны и частицы, но, не будучи теоретиком, не имел особенно четких представлений об этом предмете... Он настойчиво обращал мое внимание на важность и несомненную реальность дуальных аспектов волны и частицы. Эти долгие беседы... помогли мне глубоко понять необходимость обязательной связи волновой и корпускулярной точек зрения».

Уже в своей первой статье 1923 г. Луи де-Бройль высказал предположение, что «пучок электронов, проходящий через достаточно узкое отверстие, также должен обнаруживать способность к интерференции». Тогда на это замечание никто из серьезных экспериментаторов внимания не обратил, хотя уже в то время был известен эксперимент Дэвиссона и Кансмена, а также опыты Карла Рамзауэра (1879—1955) и Джона Таунсенда (1868—1957), из которых следовало, что электроны, проходя через газы при определенных энергиях, почти не рассеиваются — явление, аналогичное эффектам просветленной оптики и противоположное резонансному поглощению, наблюдаемому в опыте Франка и Герца.

Поль Ланжевен, руководитель диссертации де Бройля, относился к его идеям сдержанно, но доброжелательно. В апреле 1924 г. он сообщил их участникам IV Сольвеевского конгресса, а в декабре послал диссертацию на отзыв Эйнштейну, который в свою очередь горячо советовал Максу Борну: «Прочтите ее! Хотя и кажется, что ее писал сумасшедший, написана она солидно». В дальнейшем Эйнштейн сочувственно цитировал ее в своих работах, и Шрёдингер впоследствии благодарил его за то, что он его вовремя «щелкнул по носу, указав на важность идей де Бройля».

Не все приняли идею о волнах материи столь же благосклонно. Планк вспоминал впоследствии, что, услышав от Крамерса на одном из семинаров о работе де Бройля, он «только покачал головой», а присутствовавший при этом Лоренц сказал: «Эти молодые люди считают, что отбрасывать старые понятия в физике чрезвычайно легко!»

В начале 1925 г. Макс Борн обсуждал эти идеи со своим близким другом и коллегой по Гёттингенскому университету Джеймсом Франком. При обсуждении присутствовал студент Борна Вальтер Эльзассер, который тут же предложил провести эксперимент по дифракции электронов. «Это необязательно, — ответил Франк,— эксперименты Дэвиссона уже установили наличие наблюдаемого эффекта» (сам Дэвиссон так не считал и вряд ли хорошо был знаком с идеей де Бройля). Вальтер Эльзассер после этих дискуссий написал короткую заметку, в которой объяснял результаты опытов Дэвиссона и Кансмена, а также эффект Рамзауэра — Таунсенда с помощью представлений о волнах материи.

Заметка Эльзассера была напечатана в июле 1925 г., еще до направления в печать первой работы Гейзенберга, но на нее мало кто обратил тогда внимание: вскоре большинство увлеклось новой матричной механикой.

Эрвину Шрёдингеру в 1925 г. было уже 38 лет, и он не так просто поддавался моде и увлечениям. Подобно Гейзенбергу, он окончил классическую гимназию, где основными предметами были латынь и греческий, а по складу ума он был поэтом и мыслителем. К сожалению, Шрёдингер не оставил после себя, подобно Гейзенбергу, живых воспоминаний об эпохе «Sturm und Drang» квантовой механики. Быть может, потому, что свои главные открытия он сделал в зрелые годы, когда юношеский пыл действия сменяется спокойной мудростью знания, а ликование первооткрывателя смягчается пониманием относительной ценности всего сущего.

Перейти на страницу:

Похожие книги

Доказательная медицина. Что, когда и зачем принимать
Доказательная медицина. Что, когда и зачем принимать

Доказательная медицина – термин широко известный, даже очень. А все широко известное, уйдя в народ, наполняется новым, подчас неожиданным, смыслом. Одни уверены, что доказательная медицина – это юридический термин. Другие считают доказательной всю официальную медицину в целом, что не совсем верно. Третьи знают из надежных источников, что никакой доказательной медицины на деле не существует, это выдумка фармацевтических корпораций, помогающая им продвигать свою продукцию. Вариантов много… На самом деле доказательная медицина – это не отрасль и не выдумка, а подход или, если хотите, принцип. Согласно этому принципу, все, что используется в профилактических, лечебных и диагностических целях, должно быть эффективным и безопасным, причем оба этих качества нужно подтвердить при помощи достоверных доказательств. Доказательная медицина – это медицина, основанная на доказательствах. Эта книга поможет разобраться как с понятием доказательной медицины, так и с тем, какие методы исследования помогают доказать эффективность препарата или способа лечения. Ведь и в традиционной, официальной, полностью научной медицине есть куча проблем с подтверждением эффективности и безопасности. Правильное клиническое исследование должно быть прозрачным и полностью объективным. На этих двух столпах стоит доказательная медицина. А эти столпы опираются на фундамент под названием «эксперимент».

Кирилл Галанкин

Научная литература / Научно-популярная литература / Образование и наука
Достучаться до небес. Научный взгляд на устройство Вселенной
Достучаться до небес. Научный взгляд на устройство Вселенной

Человечество стоит на пороге нового понимания мира и своего места во Вселенной - считает авторитетный американский ученый, профессор физики Гарвардского университета Лиза Рэндалл, и приглашает нас в увлекательное путешествие по просторам истории научных открытий. Особое место в книге отведено новейшим и самым значимым разработкам в физике элементарных частиц; обстоятельствам создания и принципам действия Большого адронного коллайдера, к которому приковано внимание всего мира; дискуссии между конкурирующими точками зрения на место человека в универсуме. Содержательный и вместе с тем доходчивый рассказ знакомит читателя со свежими научными идеями и достижениями, шаг за шагом приближающими человека к пониманию устройства мироздания.

Лиза Рэндалл

Научная литература