Мы уже писали, что зарождение и развитие любого из разделов физики начиналось тем раньше и легче, чем меньше изучаемые в этом разделе процессы зависели от трения и чем, следовательно, проще было идеализировать их, то есть мысленно очистить от порождаемых необратимостью тепловых эффектов.
Чтобы оценить величие основоположников термодинамики, мы должны ясно понимать: им надлежало идеализировать, очистить от необратимости сами тепловые эффекты! Забегая вперед, скажем: им удалось установить, что тепловое движение наделено некоей двойственностью. С одной стороны, существует огромный класс явлений, в которых тепловое движение в принципе выступает, как говорится, «на равных» с другими формами движения и ничуть «не хуже» механического, электрического, магнитного, химического и т. д. С другой — есть множество процессов, в которых тепловое движение, порождаемое трением, играет особую роль, принципиально отличается от всех других форм движения. Другими словами: не всякий тепловой процесс должен быть необратимым, но всякий необратимый процесс должен быть тепловым. Идеализация, то есть устранение трения из всех изучаемых процессов, в том числе и тепловых, равнозначна превращению физики в некую обобщенную механику, в которой нет принципиального различия между механическими, электромагнитными, химическими, световыми и даже тепловыми процессами. Все эти процессы в обобщенной механике полностью обратимы и все формы движения полностью и без всяких потерь могут сколь угодно долго переходить одна в другую. Но прежде чем была достигнута такая ясность, создателям термодинамики пришлось пройти весьма мучительный путь, изобиловавший такими драматическими моментами, каких, быть может, и не найдется в истории других наук…
Научные теории подобны мышам, утверждал некогда Вольтер. Как мышь может счастливо проскочить девять мышеловок и попасть в десятую, так и научная теория, удачно объяснившая девять фактов, может быть опровергнута одним-единственным десятым. Эксперименты баварского министра внутренних дел графа Румфорда как раз и оказались такой «десятой мышеловкой» для теории теплорода.
XVIII век вошел в историю физики как эпоха невесомых материй — импондерабилий. Будучи не в состоянии найти хоть что-нибудь общее в механических, оптических, электрических, магнитных явлениях, ученые тех времен с большой легкостью плодили всевозможные материи и жидкости — электрическую, магнитную, световую и т. д. Убедившись в безрезультатности всех попыток взвесить их, они пришли к выводу, что жидкости эти — невесомые. Была придумана соответствующая жидкость — теплород — и для объяснения тепловых процессов. Нужно признать: теплород сослужил хорошую службу науке. Он внес известный порядок в хаос накопленных к тому времени фактов. Он позволил выделить из массы явлений окружающего мира явления чисто тепловые. Следуя теории теплорода, плеяда блестящих экспериментаторов заложила основы современной калориметрии. И вольно или невольно мы и по сию пору отдаем дань уважения достижениям этой теории, когда произносим терм-ины «теплоемкость», «теплопроводность», «теплота парообразования», «теплота плавления». Но был один факт, который вызывал смутное беспокойство у сторонников теплородной теории. Факт этот — выделение теплоты при трении. Чтобы не отказаться от множества объясненных с помощью теплорода явлений, ученые попытались приспособить теорию и для толкования этого процесса.
Первое, что пришло им в голову, — рассматривать нагрев при трении как «выжимание» теплорода из тел. Позднее они стали более тонко объяснять этот эффект уменьшением теплоемкости при трении, а образование теплоты — освобождением теплорода из химически связанного состояния. Все это получилось так удачно, что из факта, противоречащего теории, трение превратилось в факт, подтверждающий ее.
И вот н
В одном из опытов тупое сверло, прижатое к бронзовой болванке с силой 4500 кг, уже через 30 мин, сделав всего 960 оборотов, нагрело ее почти на 40 °C. Откуда берется такое огромное количество теплоты? «Выжимается» из стружек? Но их слишком мало. Может быть, из воздуха, поступающего внутрь отверстия при сверлении?