Читаем Подъём затонувших кораблей полностью

В октябре 1969 г. семеро англичан, один австриец и двое венгров объявили о своем намерении поднять знаменитый лайнер “Титаник”, “непотопляемый корабль”, затонувший в 1912 г. в Северной Атлантике в результате столкновения с айсбергом и унесший с собой 1513 жизней. Метод, которым намеревались воспользоваться авторы проекта, отличался смелостью и оригинальностью: разложить морскую воду на составные элементы, а образующийся при этом водород подавать по трубам в прикрепленные к затонувшему судну контейнеры до тех пор, пока подъемная сила газа не станет достаточной, чтобы заставить “Титаник” всплыть. Однако до настоящего времени ничего больше об этом плане не было слышно.

Итак, несмотря на колоссальные успехи в усовершенствовании водолазного снаряжения, значительный прогресс в изучении физиологических процессов человеческого организма в условиях высоких давлений, невзирая на создание великого множества различных глубоководных аппаратов, разработку новых способов судоподъема с использованием пенопластов, гранул и сфер, мы вынуждены вновь вернуться к извечным проблемам. Проблемам, которые всегда препятствовали людям поднимать с действительно большой глубины что-либо немного крупнее гребной шлюпки или тяжелее слона.

Проблемы эти нетрудно перечислить. Как вы найдете судно, лежащее на дне океана, а если даже вам это удастся, где гарантия, что вы потом снова сумеете его обнаружить? Как вы добьетесь того, чтобы спасательное судно на поверхности моря не изменяло своего положения относительно затонувшего корабля, когда местонахождение последнего будет окончательно установлено? Наконец, как вы сможете оторвать от грунта корабль и поднять его на поверхность?

Вполне простые, на первый взгляд, вопросы. Однако для большинства компаний, занимающихся спасательными работами или исследованиями океана, ответы на них будут настолько сложными, что их предпочтут вообще не обсуждать. Вспомните признание Эда Линка: “Ни один из известных нам методов непригоден для глубин, превышающих предел погружения водолаза”. Развивая свою мысль, Линк подтвердил, что в настоящее время мы располагаем для подъема судов с больших глубин лишь все теми же подъемными тросами и понтонами.

“Штормы на поверхности моря, меняющие свое направление подводные течения будут постоянно создавать сплошную путаницу из систем тросов. А сколько трудностей будет связано с закреплением понтонов - безразлично, жестких или мягких - на таких глубинах!.. Когда затонувшее судно снова обретет плавучесть, оно может выскочить на поверхность с такой скоростью, что понтоны разлетятся вдребезги или из них выйдет воздух, и тогда оно снова погрузится в пучину океана”.

Последнее замечание касается одной из самых старых проблем в спасательном деле: преодоление сцепления между днищем судна и грунтом или илом зачастую требует намного больших усилий, чем просто подъем судна на поверхность. История спасательных работ знает немало случаев, когда уже поднятое судно в результате этого явления снова уходило на дно. Так было, например, с подводными лодками S-51 и “Скволус”. Чересчур большое усилие, необходимое для отрыва судна от грунта, часто приводит к тому, что во время подъема процесс выходит из-под контроля.

Компания “Оушн сайенз энд инджиниринг” (ОСИ) запатентовала два метода, позволяющие нарушить сцепление между корпусом затонувшего корабля и илом без затраты дополнительных усилий на подъем судна.

Первый из них предназначен для металлических судов и может применяться на любой глубине, доступной для погружения аппаратов. Второй - рассчитан на суда с деревянным или другим неметаллическим корпусом.

В первом случае баржа или спасательное судно с установленным на борту источником электроэнергии становится на якорь над затонувшим кораблем. Электрический кабель от положительного полюса генератора опускается на дно и присоединяется водолазами (а на большой глубине - с помощью манипуляторов подводного аппарата) к нескольким точкам корпуса судна, в результате чего оно становится огромным электродом (катодом). От противоположного (отрицательного) полюса генератора в воду недалеко от судна опускается второй кабель (анод). Затем включается ток.

Морская вода, разделяющая оба электрода, играет роль проводника, по которому начинает протекать электрический ток. Происходит процесс электролиза воды, и на поверхности корпуса затонувшего судна образуются миллионы пузырьков водорода, постепенно разрушающие силу сцепления или статическое трение между корпусом и удерживающим его илом. Когда сцепление между корпусом и илом будет уничтожено, судно поднимают на поверхность любым из существующих методов, наиболее подходящим в данном случае. Этот способ дает очень хорошие результаты при стягивании на глубокую воду севших на илистую отмель судов.

Перейти на страницу:

Похожие книги

История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия
История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия

Настоящая книга представляет собой интереснейший обзор развития инженерного искусства в истории западной цивилизации от истоков до двадцатого века. Авторы делают акцент на достижения, которые, по их мнению, являются наиболее важными и оказали наибольшее влияние на развитие человеческой цивилизации, приводя великолепные примеры шедевров творческой инженерной мысли. Это висячие сады Вавилона; строительство египетских пирамид и храмов; хитроумные механизмы Архимеда; сложнейшие конструкции трубопроводов и мостов; тоннелей, проложенных в горах и прорытых под водой; каналов; пароходов; локомотивов – словом, все то, что требует обширных технических знаний, опыта и смелости. Авторы объясняют назначение изобретений, дают подробные описания составных частей и как они взаимодействуют, сообщают основные размеры, дают представление о технологии строительства или сборки. Завершается обзор очерком о влиянии инженерии на общество, в котором утверждается, что технология должна содействовать повышению этических и эстетических ценностей.Книга богато иллюстрирована и написана простым доступным языком, не отягощенным большим количеством технических терминов и деталей.

Артур Бёрр Дарлинг , Ричард Шелтон Кирби , Сидней Уитингтон , Фредерик Гридли Килгур

История техники
Антикитерский механизм. Самое загадочное изобретение Античности
Антикитерский механизм. Самое загадочное изобретение Античности

Это уникальное устройство перевернуло наши представления об античном мире. Однако история Антикитерского механизма, названного так в честь греческого острова Антикитера, у берегов которого со дна моря были подняты его обломки, полна темных пятен. Многие десятилетия он хранился в Национальном археологическом музее Греции, не привлекая к себе особого внимания.В научном мире о его существовании знали, но даже ученые не могли поверить, что это не мистификация, и поразительный механизм, использовавшийся для расчета движения небесных тел, действительно дошел до нас из глубины веков. Только благодаря энтузиазму немногих ученых, которые не смогли пройти мимо этой загадки, удалось датировать механизм и сделать его реконструкции. Прошло больше столетия со дня этой удивительной находки, но только сейчас можно говорить о том, что ее тайна наконец раскрыта. Тем не менее работа по исследованию Антикитерского механизма продолжается и далека от завершения.О том, как был найден «первый компьютер», о людях, которые посвятили себя его изучению, и о самых удивительных механизмах в истории человечества рассказывает книга Джо Мерчант.

Джо Мерчант

История техники