Новые возможности, которые нельзя реализовать с надводного судна, открывает установка на подлодке эхолотов «вверх ногами», то есть с вибраторами, обращенными вверх. Например, такой способ позволил нам, когда мы проходили на «Северянке» сквозь скопление атлантической сельди, определять его плотность, зондируя пространство над лодкой и под ней. На «Северянке» верхним эхолотом определяли высоту и период волнения, бушевавшего где‑то высоко над головой. Нам, в сущности, удалось автоматизировать процесс наблюдения над волнами — «валами морскими». Так их назвал в начале XIX века известный мореплаватель командир брига «Рюрик» лейтенант O. K. Коцебу, которому также принадлежат слова: «Теория сего движения еще весьма несовершенна и самый предмет столь скоротечен и мало удобен к объятию».
Обращенный вверх эхолот, доставленный подлодкой под лед, позволяет также измерять форму, толщину и плотность ледового покрова.
И наконец, оптика моря. Нужная направленность подводных оптических приборов — первое условие для точных измерений. На надводном судне, которое сносится ветром во время дрейфа, выполнить это условие не всегда позволяет наклонное (не вертикальное) положение кабель–троса. При стоянке на якоре кабель–трос отклоняется течением.
Другая помеха подводным оптическим измерениям — это прямой солнечный свет, отражаемый бортами надводного судна, или же затенение от его корпуса. Ошибки наблюдений в этом случае будут существенными.
И опять мы скажем, что выход здесь — в использовании подводной лодки, которая способна стать основным средством для оптических исследований. Приборы устанавливаются прямо на корпусе подлодки. Уже первые разовые наблюдения из «Триеста» показали, что предел восприятия человеком дневного света находится на глубине между 600 и 700 метрами (по расчетам — на 800 метрах). Систематических же работ по установлению предела глубины, ниже которого яркость становится слабее чувствительности глаза, для разных морей и океанов до сих пор не проводилось. Важный вклад в практику измерений и теорию дальности видимости под водой внес исследователь О. А. Соколов, использовавший для этой цели «Северянку». С помощью «ныряющею блюдца» французские исследователи измеряли у берегов Корсики яркость погружаемой на различную глубину лампы с горизонтальным удалением от нее 360 метров. Как оказалось, человеческий глаз в условиях эксперимента смог различать лампу в 500 ватт на расстоянии до 275 метров.
Но это лишь часть задач из области оптики, решение которых под силу подводной лодке.
Преимущество пятое. Оторвавшись от поверхности и погрузившись на глубину или совершив посадку на грунт, подводная лодка превращается в относительно стабилизированное основание. А это значит, что и аппаратура и наблюдатели могут работать и получать результаты при любом состоянии моря.
Американский исследователь Уильям Кроми указывает: «Порою на то, чтобы спустить якоря, провести измерения и сняться с якоря, уходило четыре дня». (Кроми имеет здесь в виду работу на глубине до 3,5 мили.) А свежая и штормовая погода, на которую в Мировом океане приходится около 20 процентов года, означает для надводных экспедиционных судов мертвый сезон. Если не считать, конечно, попутных наблюдений, которые удается провести в это время. Качка заставляет корпус судна вибрировать, отрицательно влияет на эксплуатационный режим приборов, на самочувствие и работоспособность людей. Если прибор на качке опущен за борт, то он вносит возмущения в окружающую среду. Этот фактор, конечно, отрицательно влияет на достоверность показаний. Но он, к сожалению, пока никак не контролируется.
Даже огромные современные научные лайнеры, оборудованные успокоителями качки, испытывают во время шторма неприятные минуты. Что же тогда говорить об исследовательских судах среднего и малого тоннажа?