Глава 3
Вода не должна попасть в «населённый» отсек подлодки
• Прочность стали.
• Важность гидродинамики.
• Понятие балласта.
• Как правильно распределить балласт.
Подлодка предназначена для того, чтобы позволить путешествовать под водой в заданном направлении. Для достижения желаемого результата подлодка должна быть водонепроницаемой. Многие люди думают, что мы можем достигнуть этого путем использования твердой стали, это очень распространенное заблуждение. Необходима не сама сталь, а её прочность.
Корпус подлодки сделан из стали HY-80 или HY-100, что значит, что он может выдержать давление 80 000 и 100 000 фунтов на каждый квадратный дюйм поверхности соответственно. Если вы, к примеру, возьмёте трубу из такого же материала, то она выдержит давление 5200 атм. или 6500 атм. перед тем как начнет разрушаться.
Это значит, что металл может выдержать очень высокое давление — он поглощает энергию за счёт собственной деформации. Материал является твердым, если он способен выдержать большее давление перед тем, как разрушиться. Прочность материала означает, насколько этот материал способен деформироваться перед тем как разрушиться. Стекло — твёрдый, но не прочный материал. Такое свойство материала называется ломкость, хрупкость… В случае с корпусом подлодки необходимо достичь приемлемой твердости материала при высокой прочности, для того чтобы корпус мог выдерживать давление на большой глубине, не давая трещин.
Корпус сделан из стальных пластин толщиной 5 сантиметров сваренных друг с другом. Но вам напрасно кажется, что нужно просто изготовить трубу диаметром 96 сантиметров и этим ограничиться. В корпусе имеются десятки отверстий, в том числе те, которые ведут во внутренние трубы для морской воды. Некоторые трубы для морской воды имеют очень большой диаметр — до 50 сантиметров. Морская вода используется для охлаждения оборудования в машинном отделении или в системе охлаждения в передней части подлодки. Это необходимо. Морская вода также поступает в ёмкости, используемые для выравнивания осадки судна.
Гидродинамика играет очень важную роль в дизайне подлодок. Это наука о том, как уменьшить усилие, для того чтобы обеспечить движение корпуса подлодки в воде. Это подводный эквивалент аэродинамики. В обеих науках главная задача — уменьшить лобовое сопротивление (силу, препятствующую движению).
Во время Второй мировой войны нос дизельных подлодок напоминал по форме нос обычного корабля. Это было сделано для увеличения скорости движения на поверхности воды. Современные атомные подлодки спроектированы, чтобы двигаться с максимальной скоростью под водой. Их скорость на поверхности ограничена. Больше мощности необходимо для преодоления сопротивления на поверхности из-за волн. При полном погружении вода обтекает судно со всех сторон легко и ровно, что обеспечивает движение с максимальной скоростью (до 35 узлов, или морских миль в час (при фиксированной мощности подлодки (30 000 л/с для подлодок класса «Лос-Анджелес»).
Дизайн подлодки испытывается с применением компьютерных симуляторов и буксирных ёмкостей. Буксирная ёмкость представляет собой бассейн с находящимся наверху мотором на рельсах. Мотор способен тянуть корпус подлодки в воде, а специальные тросы натяжения измеряют сопротивление модели. Сложные вычисления проводятся для соотнесения сопротивления и реального размера судна. Эти силы соотносят с мощностью, необходимой для движения корабля.