Читаем Поиски истины полностью

Опасность введения предвзятых понятий, основанных на повседневном опыте, была ясна уже Галилею, который в «Разговорах» призывает к «меньшей доверчивости к тому, что на первый взгляд представляют нам чувства, способные нас легко обмануть… Лучше… постараться посредством рассуждения или подтвердить реальность предположения, или разоблачить его обманчивость».

В начале XX века этот призыв превратился в требование наблюдаемости вводимых понятий. В 1905 году Эйнштейн, создавая теорию относительности, начал

с анализа понятия одновременности. Это понятие раньше вводилось в науку интуитивно без указаний на какой-либо, хотя бы принципиально, возможный способ проверки. Эйнштейн задался целью выяснить, является ли понятие одновременности относительным, то есть изменяется ли оно при переходе к движущейся системе координат. Совпадает ли понятие одновременности для наблюдателя, стоящего на земле, и наблюдателя, равномерно движущегося относительно нее?

Чтобы ответить на этот вопрос, нужно было дать способ физического определения одновременности. Эйнштейн предложил следующее: две вспышки света в точках А и В считаются одновременными, если свет от них приходит в точку, лежащую посередине, одновременно. Из этого определения немедленно вытекает, что события, одновременные для неподвижного наблюдателя, не одновременны для наблюдателя, движущегося относительно платформы, на которой выбраны точки А и В. Действительно, пусть платформа проносится мимо нас в сторону от А к В. Если в средней точке платформы обе вспышки были получены одновременно, то наблюдатель на платформе скажет, что вспышки в А и В произошли одновременно, тогда как неподвижный наблюдатель будет считать, что одна вспышка произошла позже - ведь средняя точка движется навстречу свету, и вспышке от В до середины приходится пройти меньшее расстояние, чем вспышке от А.

Итак, одновременность оказывается понятием относительным. Но если так, то и длина, скажем, какого-нибудь стержня тоже оказывается относительной, ведь для того, чтобы установить ее, нужно одновременно измерить положение левого и правого концов. Когда такое измерение будет делать физик, находящийся на платформе, неподвижный наблюдатель увидит, что он измеряет левый и правый концы не одновременно. Правильное, с точки зрения неподвижного наблюдателя, значение будет отличаться от значения, определенного движущимся наблюдателем.

По существу, вся частная теория относительности возникает как следствие последовательно проведенного принципа наблюдаемости. Единственное, на чем мы основывали рассуждения, - независимость скорости света от движения источника, а это следует из уравнений Максвелла и с большой точностью было проверено на опыте Альбертом Майкельсоном в 1881 году. Простые алгебраические вычисления привели Эйнштейна к объяснению лоренцова сокращения: длина движущегося со скоростью v предмета / сокращается в направлении движения по сравнению с длиной неподвижного /0:/=/0]/1-v2/c2. У Лоренца это сокращение получалось из сложного расчета электродинамических сил, действующих между движущимися зарядами, а эйнштейновский результат - всеобщий, не зависящий от устройства тел, он является следствием свойств пространства и времени, общих для всех явлений. Аналогично интервал времени t в движущейся системе удлиняется по сравнению с интервалом t0 между теми же событиями, измеренными в неподвижной системе t=t0/sqrt(l-v2/c2). Эта формула с большой точностью проверена на опыте. Время распада быстродвижущегося пиона оказывается большим, чем время жизни неподвижного.

Для тел, движущихся со скоростями, малыми по сравнению со скоростью света, поправки, вызываемые этими соотношениями, ничтожно малы. Из приведенных выражений видно, что скорость материальных тел не может превысить скорость света.

В ньютоновой механике считалось, что время течет одинаково для всех наблюдателей. Связь координаты и времени движущегося и неподвижного наблюдателей имела вид: х'= x+vt; t'=t. Эту связь мы должны будем теперь изменить: x'=/gamma(x+vt), где /gamma - множитель, который стремится к единице при малых скоростях. Так как оба наблюдателя отличаются друг от друга только знаком скорости, то должно быть аналогичное равенство: х = /gamma (х' - vt'). Величина /gamma сразу получится из требования, чтобы скорость света была одинакова в той и в другой системах, то есть чтобы при x = ct получалось х' = ct'. Отсюда сразу же следует, что Y=l//sqrt(l-v2/с2) и, кроме того, вытекают те соотношения для сокращения длины и удлинения времени, которые мы уже приводили. Предлагаю читателям самим получить эти результаты.

Перейти на страницу:

Похожие книги