Наконец драгоценный образец можно положить под… А что мы, собственно, хотим увидеть? Если просто полюбоваться красотой его микроскульптуры и микроструктуры, достаточно «обычного» сканирующего микроскопа. При условии, конечно, что поверхность окаменелости хорошо видна. Если же она плохо различима или нам интересно, что там внутри объекта изучения (а это всегда интересно), можно воспользоваться фазово-контрастным синхротронным микротомографом – прибором, сочетающим возможности рентгеновского аппарата и компьютерного томографа. Для этого необходимо, чтобы остатки по минеральному составу резко контрастировали с породой. И тогда в результате последовательной, буквально помикронной, «считки» всего объема кости, раковины или даже минерализованного тельца, пытавшегося навсегда укрыться внутри раковины, мы получим трехмерное изображение (и при желании – стереофотографию), где все видно в мельчайших подробностях. Причем любое: вместе с породой, отдельно, «вывернутое наизнанку». В последнем случае мы, например, увидим полости в скелете, которые в зависимости от того, что изучается, могут представить и расположение клеток – остеоцитов, когда-то контролировавших обмен веществ между костной тканью и кровеносной системой, и сосудистую кровеносную систему, и детали мозга со всеми важнейшими парами черепных нервов. По этим данным можно реконструировать скорость роста и темпы обмена веществ у «подопытного» животного, мощь его мускулатуры, сезонные и суточные ритмы жизни, поведение.
На компьютере можно ввести поправки на искажения, связанные со сдавливанием и растягиванием остатков в породе, и получить трехмерное изображение исходного организма, даже распечатать его на 3D-принтере, лучше в увеличенном масштабе.
А если скелет известковый и порода такая же? Тогда используем старинный, нудный и шумный способ, освоенный палеонтологами в начале XX в. – серийные пришлифовки. На механический шлифовальный круг капаем очень тонкий (обычно алмазный) абразивный гель и слой за слоем с образца снимаем «стружку» по нескольку десятков – сотен микронов толщиной. Раньше каждый такой последовательный срез либо зарисовывали (есть рисовальные аппараты, позволяющие усилить точность контура), либо протравливали в слабой кислоте и отпечатывали на ацетатной пленке. Если же ученый решал изобразить все настолько подробно, чтобы затем по серии зарисовок создать трехмерную модель, на это уходили годы. Так, специалисту по ископаемым рыбам Эрику Ярвику из Шведского музея естественной истории в середине прошлого века понадобилось 25 лет на лепку по 500 последовательным рисункам восковой модели кистеперой рыбы эустеноптерона (
Трехмерную реконструкцию, полученную тем или иным способом, можно «мучить» и дальше. Скажем, мы получили виртуальный слепок черепа нашего палеонтологического «всего» – короля ящера-деспота (так дословно переводится имя
Сама по себе картина, где без малого 10 т мяса, поминутно теряя зубы и куски челюстей и ничего не соображая, не могут угнаться за годовалым детенышем гадрозавра, по меньшей мере нелепа. Но для достоверности попробуем использовать современные методы. Томография мозговой полости тираннозавра показывает, что коэффициент энцефализации у него выше, чем у многих манирапторов, стремившихся стать птицами, – 2,2–2,4. Этот показатель рассчитывается довольно просто:
EQ = m/0,12M2/3
,где
EQ – коэффициент энцефализации;
m – масса мозга;
M – общая масса тела.