Главным возражением против теории симбиогенеза оставалось отсутствие случаев симбиоза между разными бактериями, поскольку строение их клеточных мембран (они не могут впячиваться) не позволяет одному микробу поглотить другого, чтобы тот остался цел и невредим. И если одному такому существу очень понравилось другое, оно его просто высосет. В новом тысячелетии выяснилось, что по крайней мере разнородные протеобактерии способны существовать одна внутри другой, делиться продуктами обмена веществ и даже обмениваться генами. А молекулярная биология поставила две жирные точки.
Во-первых, митохондрии – это не просто родственники неких бактерий, а прямые потомки альфа-протеобактерий, использующих кислород как акцептор электронов для ускорения процессов биосинтеза. Благодаря митохондриям и их способностям, более экономным путем происходит синтез аденозинтрифосфата (АТФ) – нашего главного внутреннего энергетического ресурса. Одна митохондрия производит пять молекул АТФ на каждую молекулу условной глюкозы, тогда как в результате ферментации таких молекул вырабатывается только две – четыре. А ведь митохондрий очень и очень много. В итоге масса АТФ, образовавшаяся за сутки в клетках, например, человека, достигает всей массы его тела и практически полностью расходуется.
За длительное, по меньшей мере 2 млрд лет, время сосуществования с хозяевами митохондрии передали значительную часть своего генного аппарата клеточному ядру, где кодируется свыше тысячи необходимых им белков. (За собой они оставили производство лишь 13 таких компонентов.) Поэтому в ядре оказались чужеродные гены все тех же альфа-протеобактерий, например те, что отвечают за белки, устойчивые к высоким температурам. Взамен эти органеллы вовлечены в синтез белков и жиров, необходимых для жизни клетки, а некоторые белки могут использоваться для запуска апоптоза (процесса естественного отмирания клеток, без которого немыслимо развитие многоклеточного организма). Природа не терпит узких специалистов…
Во-вторых, хлоропласты – это несомненные потомки свободно живущих цианобактерий. Сегодня известно, что эти цианобактерии были близкими родственниками одноклеточных шаровидных хроококков – обычных обитателей пресных и соленых вод, нередко вызывающих их «цветение». Хроококки улавливают в дневное время азот, для чего используют запасенные ночью полисахариды и крахмал (не многие другие цианобактерии на это способны). Обретение фотосимбионта оказалось выгодным вдвойне: сразу – и органические запасы, и азотистые «удобрения». Как и в случае с митохондрией, часть генетической информации новой органеллы была передана ядру, геном которого у растений почти на 20 % состоит из генов цианобактерии.
Что касается происхождения прочих органелл, то здесь пока можно поставить не точку, а лишь многоточие. Было ли когда-то и ядро самостоятельным организмом? Пока неизвестно: у него одна мембрана, к тому же пористая. Ничего похожего нет ни у архей, ни у бактерий. А может быть, в формировании ядра помогли вирусы? Двухцепочечный поксвирус (от
Главными претендентами на роль гостеприимного хозяина, обеспечившего жилплощадью прокариот – будущих органелл, казались бактерии. Они обладают чертами эукариот, отсутствующими у архей: например, синтезируют определенные жиры и важные белки, из которых строится цитоскелет. Вообще их клетки много крупнее.
Правда, и археи имеют целый ряд особенностей, сближающих их с эукариотами. Гены, задействованные в важнейшем процессе – передаче генетической информации, – практически те же, что и у эукариот. Есть сходство в строении рибосом – производящих белки органелл. Наличествуют белки (актин и тубулин), без которых невозможно построить цитоскелет. Имеется даже набор особых рибосомных белков с сигнальной меткой, которая распознается ядром, пропускающим их на основании этой молекулярной «визы» через свою мембрану. А значит, важная задача перемещения белков в ядро была решена археями еще до появления ядра как такового.