Читаем Покоренная плазма полностью

Что сделал Кавендиш?

Ученый имел у себя в лаборатории машину для добывания электрических искр. Она была несовершенна: стеклянный круг при помощи рукоятки вращался на оси и терся о кожаные подушки. Стекло и кожа заряжались разноименными зарядами, эти заряды и могли создавать искры.

Кавендиш присоединил к зажимам электрической машины два провода и свободные концы этих проводов опустил в два стеклянных стакана с ртутью, а в ртуть поместил концы изогнутой стеклянной трубки. В незанятый ртутью объем трубки ученый «запер» смесь кислорода и азота, добытого из воздуха.

Три недели, днем и ночью, Кавендиш и его слуга вращали стеклянный круг электрической машины. Искры неутомимо прыгали внутри трубки из одного стакана в другой. Постепенно трубка наполнилась оранжево-красным дымом. Ученый тщательно исследовал его и обнаружил, что это были окислы азота — соединения азота с кислородом. В воздухе подобная реакция происходит при грозовых разрядах, но во времена Кавендиша этого никто не знал.

Так электрическая искра, умело использованная ученым, родила новые вещества.

Но Кавендиш не прекратил на этом опыта. Пипеткой он впустил в трубку раствор едкого натра. Красноватый дым исчез — едкий натр поглотил окислы азота. А машина продолжала работать. Новые искры скакали из стакана в стакан, все выше и выше поднималась по трубке ртуть, заполняя пустоту. Ученый решил превратить в окислы весь азот, имеющийся в трубке, поэтому все вращал и вращал ручку машины. Своей цели Кавендиш не достиг. Сколько ни гонял он искры, в трубке оставался крохотный пузырек газа, который никак не хотел вступать в реакцию.

«Это был остаток азота, — записал пунктуальный ученый, — который почему-то не удалось соединить с кислородом». Такая запись появилась в 1785 году.


Как были обнаружены световые позывные плазмы


Оставим пока в покое маленький пузырек газа, оказавшийся в стеклянной трубке у Кавендиша.

Перекочуем из восемнадцатого века в середину девятнадцатого и заглянем в лабораторию профессора химии Роберта Бунзена, который жил в небольшом немецком городе Гейдельберге.

Многие часы проводит профессор около газовой горелки, которую он сам изобрел.

Горелка Бунзена — устройство простое. На подставке стоит металлическая трубка. Снизу по шлангу в нее подается светильный газ, а с боков через два отверстия в средней части поступает воздух. Стоит поднести спичку к верхнему концу трубки, и над ней вспыхнет бледное, почти бесцветное пламя.

Маленькое пламя, но жаркое: температура внутри него равна 2300 градусам — это на полтысячи градусов больше, чем внутри домны.

Бунзен, конечно, не знал, что пламя его газовой горелки — плазма. Не знал он точно и какова температура пламени. Но, погружая в пламя различные металлы и другие вещества, он убеждался, что они испарялись. При этом пары металлов окрашивали пламя горелки в какой-либо цвет. Натрий делал пламя ярко-желтым, калий — фиолетовым, литий — красным, медь — зеленым.

«По цвету пламени можно распознавать вещества!» — решил Бунзен и стал помещать в пламя всё новые и новые пробы. Но вскоре ученый обнаружил, что пользоваться световыми сигналами, полученными им, нельзя. Оказалось, что два разных вещества могли по-одинаковому окрасить пламя. Так, соли лития и соли стронция — обе давали малиново-красный цвет. Кроме того, трудно было отделить световые сигналы веществ, состоящих из нескольких элементов.

Бунзен попал в тупик. И тут на помощь ему пришел другой гейдельбергский профессор — физик Густав Кирхгоф. Он изобрел необычный прибор и сам придумал ему название «спектроскоп».

Через этот прибор и предложил Кирхгоф посмотреть на окрашенное пламя горелки.

Свершилось чудо: сплошное светящееся пламя оказалось разбитым на составные части — отдельные цветные линии. Ученые по очереди смотрели в спектроскоп и каждый раз видели не сплошную полосу света, а светящиеся линии — столбики.

Это были «позывные» веществ, превращенных газовой горелкой в плазму.

Как же смог спектроскоп Кирхгофа выделить их?

Это нетрудно понять, если разобраться в устройстве прибора. На рисунке изображена его схема.

Лучи света попадают в спектроскоп слева через узкую щель. В середине спектроскопа расположена главная его деталь — стеклянная призма, напоминающая формой небольшой клин. Световые лучи беспорядочной толпой ударяются в левую грань призмы, а выходят из призмы в строгом порядке. Если на пути этих вышедших из призмы лучей поставить экран, то на нем красные лучи обязательно будут вверху, ниже их разместятся оранжевые, потом желтые, зеленые, голубые, синие и ниже всех — фиолетовые.

Такая цветовая гамма, называемая сплошным спектром, будет в том случае, если в спектроскоп послать белый дневной свет, который является, как известно, смесью лучей вышеназванных цветов. Каждый из них по-разному преломится призмой, поэтому лучи попадут в разные точки экрана.

Раскаленные пары металлов и других веществ не обладают таким богатством световых лучей. Поэтому они, попав в пламя горелки, окрашивают его в какой-нибудь определенный цвет, а в спектре можно отыскать лишь отдельные цветные линии.

Перейти на страницу:

Похожие книги

101 ключевая идея: Физика
101 ключевая идея: Физика

Цель книги — доступным и увлекательным способом познакомить читателя с физикой, привлечь внимание к знакомым предметам, раскрыть их незнакомые стороны. Здесь объясняется 101 ключевая идея великой науки, расширяющей наши знания о мире. Факты и основные понятия физики изложены так, что развивают любознательность, помогают преодолеть косность рутинного мышления, обостряют интерес к вещам, не затрагивающим нашего существования, но без которых это существование уже не мыслится; а где есть интерес, там есть желание новых знаний. От читателя не потребуется особой подготовки, кроме способности воспринимать и удивляться. Статьи расположены в алфавитном порядке. Книга предназначена для широкого круга читателей, а также учащихся школ и вузов.

Джим Брейтот , Олег Ильич Перфильев

Физика / Справочники / Образование и наука / Словари и Энциклопедии
Куда течет река времени
Куда течет река времени

Занимательный рассказ о развитии одного из фундаментальных физических понятий — понятия времени, о различных свойствах времени, их значении для исследования проблем физики элементарных частиц сверхвысоких энергий, проблем астрофизики, а также совершенствования новейших технологий. Читатели познакомятся с выдающимися учеными, посвятившими жизнь изучению всех этих вопросов.Игорь Дмитриевич Новиков (родился 10 ноября 1935 года в Москве) — российский астрофизик-теоретик и космолог. Автор (совместно с Зельдовичем) монографий "Релятивистская астрофизика" (1967), "Теория тяготения и эволюция звезд" (1971), "Строение и эволюция Вселенной" (1975). Президент Комиссии N 47 «Космология» Международного астрономического союза (1976-1979). Член-корреспондент РАН по Отделению общей физики и астрономии (астрономия) с 26 мая 2000 года. С 1994 года был директором Центра теоретической астрофизики Копенгагенского университета, где он работал с 1991 года. В 2001 году, после окончания контракта с Датской академией наук, вернулся в Россию и стал заместителем руководителя Астрокосмического Центра по науке.Новиков И. Д. Куда течет река времени?. — М.: Молодая Гвардия, 1990. — 238 с.(Эврика). — (The River of Time, translated by Vitaly I. Kisin, Cambridge University Press 1998, 2001; Il ritmo del tempo, Di Renzo Editore, Roma, 2006)

Игорь Дмитриевич Новиков

Физика / Образование и наука