Читаем Покоренная плазма полностью

Ученые долго ломали голову: как быть? И наконец нашли выход, решили и эту нелегкую задачу.

Методов повышения температуры плазмы предложено немало.

Сейчас познакомимся с одной весьма оригинальной установкой, которая нагревает воздух до десяти — пятнадцати тысяч градусов.

Разрез установки показан на рисунке (стр. 114).

Когда смотришь на эту «машину» в действии, так и хочется назвать ее — плазменный брандспойт.

Многим, конечно, приходилось видеть, как бьет струя воды из брандспойта — необходимой принадлежности любой пожарной команды.

Установка, о которой я говорю, тоже выбрасывает струю, но не воды, а плазмы. Эта струя так горяча, что сметает все на своем пути: ни один металл или сплав не может устоять перед ней.

Наш плазменный «брандспойт» — это обыкновенная разрядная камера. В ней, как и полагается, есть два электрода. Один из них — знакомый нам угольный стержень. Он соединен с плюсом источника тока. Второй электрод — отрицательный — угольная пластинка с отверстием — «окошком» — в центре. Через это «окошко» и вырывается наружу огненный язык плазмы.

Вся камера и особенно угольная пластинка, через которую выбрасывается плазма, тотчас бы расплавились, если бы не было охлаждения. В камеру по касательной врывается струя воды или инертного газа, которая, испаряясь, охлаждает стенки и спасает их от гибели. Но охладитель делает еще одно важное дело. Он помогает… поднять температуру плазмы. Да, да, холодная вода заставляет плазму разогреваться сильнее. Парадокс?

Нет!

Струя воды, попав в камеру, охлаждает не только ее стенки, но и внешние слои плазменного шнура. От этого ионов в этой части плазмы становится меньше и наружные слои начинают хуже пропускать ток.

Разрядный ток поэтому концентрируется, в основном, в центральной, более горячей части плазмы. Частота столкновения частиц газа, а значит, и температура плазмы в «сердцевине» увеличивается.

Происходит так называемое первое термическое сужение. Но это не все: за первым термическим сужением наступает второе.

Еще Фарадей заметил, что два проводника с током притягиваются друг к другу, если ток в них течет в одну и ту же сторону. Причина — взаимодействие магнитных полей, окружающих каждый проводник.

Движущиеся электрические заряды в тонком шнуре дуги можно представить как большое количество проводников с током. Когда произошло первое термическое сужение, эти «проводники» оказались тесно прижатыми друг к другу. Явление, открытое Фарадеем, сказывается на них теперь более заметно — шнур плазмы сжимается еще больше. А это ведет к новому прыжку температуры.

Электромагнитные силы, возникающие в разрядной камере, выталкивают плазму подобно тому, как водяной насос пожарной машины выбрасывает сильную струю воды из брандспойта.

Теперь можно заставить эту струю плазмы работать.

А дел для нее есть немало.

Мы уже говорили о кислородно-дуговой резке металлов. При этом способе дуга нагревает докрасна металл, а струя кислорода, окисляя, режет его.

Оказывается, плазменный брандспойт лучше справляется с такой работой. Температура струи плазмы столь высока, что ни предварительного нагрева металла, ни запаса кислорода не нужно. Сталь сама мгновенно плавится, легко уступает натиску плазмы. Огненный нож струи плазмы проходит через металл так же легко, как стальной нож через масло.

В современной технике широко применяются всевозможные жароупорные материалы. Они названы так потому, что стойко выдерживают натиск тепла. Поэтому обработка их — дело хлопотливое и трудоемкое.

Использование струи плазмы позволяет производить ее значительно быстрее.

А керамика? До последнего времени готовые изделия из керамики не удавалось плавить. В струе плазмы легко плавится и керамика. Это позволяет отливать из нее резцы, получать сплавы керамики с металлами, изготовлять детали, необходимые и химикам, и металлургам, и машиностроителям.

Каждый школьник знает, как «разлучить» воду и растворенные в ней соли. Нужно нагреть воду и испарять ее до тех пор, пока на дне не останется одна соль.

Струя плазмы может успешно выступать в роли такого испарителя. Нагревая и испаряя любые материалы, можно по очереди отделять одни их составные части от других. Если направить струю плазмы на куски руды, то нетрудно будет выделить из нее какой-либо редкий металл и получить его в чистом виде.

Плазмохимия — так можно назвать это применение плазмы — исключительно перспективная отрасль техники. Сейчас она делает первые шаги.

А теперь посмотрим, как еще в технике используется струя плазмы.

На рисунке вы видите разрез так называемого аэродинамического тоннеля.

Словно смерч врывается в него струя плазмы. Расширяясь и непрерывно набирая скорость, она способна смести все на своем пути. В узком месте тоннеля скорость раскаленной плазмы может превысить скорость звука даже в десять — двадцать раз!

Подставляя этому потоку модели самолетов и ракет, можно испытать их на прочность.

Современные ракеты при своем движении выбрасывают огромное количество плазмы. Как себя чувствуют ракеты при отрыве от Земли или во время космических полетов — важнейший вопрос ракетной техники.

Перейти на страницу:

Похожие книги

101 ключевая идея: Физика
101 ключевая идея: Физика

Цель книги — доступным и увлекательным способом познакомить читателя с физикой, привлечь внимание к знакомым предметам, раскрыть их незнакомые стороны. Здесь объясняется 101 ключевая идея великой науки, расширяющей наши знания о мире. Факты и основные понятия физики изложены так, что развивают любознательность, помогают преодолеть косность рутинного мышления, обостряют интерес к вещам, не затрагивающим нашего существования, но без которых это существование уже не мыслится; а где есть интерес, там есть желание новых знаний. От читателя не потребуется особой подготовки, кроме способности воспринимать и удивляться. Статьи расположены в алфавитном порядке. Книга предназначена для широкого круга читателей, а также учащихся школ и вузов.

Джим Брейтот , Олег Ильич Перфильев

Физика / Справочники / Образование и наука / Словари и Энциклопедии
Куда течет река времени
Куда течет река времени

Занимательный рассказ о развитии одного из фундаментальных физических понятий — понятия времени, о различных свойствах времени, их значении для исследования проблем физики элементарных частиц сверхвысоких энергий, проблем астрофизики, а также совершенствования новейших технологий. Читатели познакомятся с выдающимися учеными, посвятившими жизнь изучению всех этих вопросов.Игорь Дмитриевич Новиков (родился 10 ноября 1935 года в Москве) — российский астрофизик-теоретик и космолог. Автор (совместно с Зельдовичем) монографий "Релятивистская астрофизика" (1967), "Теория тяготения и эволюция звезд" (1971), "Строение и эволюция Вселенной" (1975). Президент Комиссии N 47 «Космология» Международного астрономического союза (1976-1979). Член-корреспондент РАН по Отделению общей физики и астрономии (астрономия) с 26 мая 2000 года. С 1994 года был директором Центра теоретической астрофизики Копенгагенского университета, где он работал с 1991 года. В 2001 году, после окончания контракта с Датской академией наук, вернулся в Россию и стал заместителем руководителя Астрокосмического Центра по науке.Новиков И. Д. Куда течет река времени?. — М.: Молодая Гвардия, 1990. — 238 с.(Эврика). — (The River of Time, translated by Vitaly I. Kisin, Cambridge University Press 1998, 2001; Il ritmo del tempo, Di Renzo Editore, Roma, 2006)

Игорь Дмитриевич Новиков

Физика / Образование и наука