Читаем Покоренная плазма полностью

Многие специалисты предсказывают настоящую революцию, которую совершат лазеры после их внедрения в радиотехнику.

На земном шаре в разных странах ежегодно вступают в строй десятки новых радиостанций, используемых для радиовещания, самолетовождения, радиотелефонной коммерческой связи. В эфире становится тесно. Если не считать радиоволн короче десяти метров, то в эфире могут работать без взаимных помех не более трех с половиной тысяч станций. Применение же лазера позволит передавать одновременно до десяти миллионов телефонных разговоров, программ вещания и телевидения.

Система лазерной связи будет в некоторой степени напоминать современные линии связи, применяемые в телевидении. Сейчас изображение передается при помощи радиоволн длиной в несколько метров. Эти ультракороткие волны, подобно свету, распространяются прямолинейно, поэтому для передачи их на далекие расстояния приходится строить башни радиорелейных линий, либо прокладывать кабель.

В будущем на таких башнях займут свое место лазеры, которые, как по эстафете, будут одновременно передавать и многие программы телевидения, и телефонные разговоры, и вещательные передачи. Антенной в лазерах служит прозрачная фокусирующая линза диаметром всего в несколько сантиметров, тогда как для передачи даже самых коротких радиоволн пришлось бы применять антенны диаметром в несколько десятков метров.

Свет имеет один недостаток: он сильно поглощается частицами пыли, тумана, находящимися в воздухе. Поэтому в тех местах, где атмосфера часто бывает непрозрачной, световой луч лазеров предполагают передавать по трубам. Уже произведены подсчеты, которые показали, что затраты на строительство таких трубопроводов довольно быстро окупятся.

Зато в космосе, где световые лучи не встречают никаких препятствий, лазер станет основным средством связи. Уже сейчас есть лазеры, создающие настолько яркий луч, что он может быть обнаружен на расстоянии шестидесяти пяти и более тысяч километров. Непрерывное совершенствование кристаллических лазеров все больше и больше увеличивает «дальнобойность» их лучей. Газовые лазеры, которые, очевидно, будут выступать в качестве приемников, будут способны отмечать самые далекие, самые слабые световые сигналы. Недавно построен газовый усилитель света со смесью гелия с ксеноном, который в сто тысяч раз усиливает принятый сигнал! Подобных усилителей радиотехника не знает.

Исследователи космоса в недалеком будущем при помощи лазеров будут изучать слабые световые сигналы, приходящие от самых далеких звезд, осуществлять связь между космическими кораблями, получать многочисленную информацию с искусственных спутников Земли и с ракет, заброшенных в межзвездные дали. Высокая направленность луча позволит осуществлять это при небольших мощностях источников питания. Можно обойтись и без таких источников вообще. Для накачки рубинового лазера, как вы знаете, нужен зеленый свет, а его сколько угодно в излучении Солнца. Достаточно сфокусировать солнечные лучи на кристалле, и лазер будет работать на этой даровой энергии.

Пока все это проекты и предсказания. Но уже сейчас найдена одна область применения лазерной связи, в которой новые приборы становятся единственно применимыми, — это под водой, где связь при помощи радиоволн невозможна. До последнего времени для этой цели использовался ультразвук, но он не обеспечивал необходимой дальности и не был достаточно надежным средством связи. Если в рубках подводных кораблей установить лазеры, то они надежно свяжут мореплавателей между собой. Причем, эти лазеры должны испускать не красный, а голубовато-зеленый свет, так как именно такие лучи меньше всего поглощаются морской водой.

Недавно было опубликовано сообщение, что такой лазер создан. В нем зеленый луч света создается не рубиновым стержнем, а стеклянным с примесью атомов ниодимия. Первый образец создавал световой импульс мощностью в десять киловатт, но есть возможность повысить ее до нескольких мегаватт.

Очень полезными окажутся лазеры в радиолокации. Свет значительно лучше, чем радиоволны, может различать предметы, находящиеся неподалеку друг от друга. Так, один из световых локаторов на лазере сумел различить два неподвижных предмета, расстояние между которыми равнялось всего трем метрам, причем, эти предметы локатор разглядел с дистанции в десять километров. Световой локатор обходится без громоздких антенн, весит около десяти килограммов и легко размещается на небольшом столе. И такой портативный прибор определяет расстояние до объектов значительно точнее, чем обычный радиолокатор.

Когда от антенны передатчика распространяется радиоволна, то в радиоприемник попадает ничтожная доля энергии. Радиопередатчик посылает волны не узким пучком, а веером, и большая часть их энергии пропадает напрасно.

Перейти на страницу:

Похожие книги

101 ключевая идея: Физика
101 ключевая идея: Физика

Цель книги — доступным и увлекательным способом познакомить читателя с физикой, привлечь внимание к знакомым предметам, раскрыть их незнакомые стороны. Здесь объясняется 101 ключевая идея великой науки, расширяющей наши знания о мире. Факты и основные понятия физики изложены так, что развивают любознательность, помогают преодолеть косность рутинного мышления, обостряют интерес к вещам, не затрагивающим нашего существования, но без которых это существование уже не мыслится; а где есть интерес, там есть желание новых знаний. От читателя не потребуется особой подготовки, кроме способности воспринимать и удивляться. Статьи расположены в алфавитном порядке. Книга предназначена для широкого круга читателей, а также учащихся школ и вузов.

Джим Брейтот , Олег Ильич Перфильев

Физика / Справочники / Образование и наука / Словари и Энциклопедии
Куда течет река времени
Куда течет река времени

Занимательный рассказ о развитии одного из фундаментальных физических понятий — понятия времени, о различных свойствах времени, их значении для исследования проблем физики элементарных частиц сверхвысоких энергий, проблем астрофизики, а также совершенствования новейших технологий. Читатели познакомятся с выдающимися учеными, посвятившими жизнь изучению всех этих вопросов.Игорь Дмитриевич Новиков (родился 10 ноября 1935 года в Москве) — российский астрофизик-теоретик и космолог. Автор (совместно с Зельдовичем) монографий "Релятивистская астрофизика" (1967), "Теория тяготения и эволюция звезд" (1971), "Строение и эволюция Вселенной" (1975). Президент Комиссии N 47 «Космология» Международного астрономического союза (1976-1979). Член-корреспондент РАН по Отделению общей физики и астрономии (астрономия) с 26 мая 2000 года. С 1994 года был директором Центра теоретической астрофизики Копенгагенского университета, где он работал с 1991 года. В 2001 году, после окончания контракта с Датской академией наук, вернулся в Россию и стал заместителем руководителя Астрокосмического Центра по науке.Новиков И. Д. Куда течет река времени?. — М.: Молодая Гвардия, 1990. — 238 с.(Эврика). — (The River of Time, translated by Vitaly I. Kisin, Cambridge University Press 1998, 2001; Il ritmo del tempo, Di Renzo Editore, Roma, 2006)

Игорь Дмитриевич Новиков

Физика / Образование и наука