Читаем Покоренная плазма полностью

Некоторые из вас, наверно, обращали внимание на бензовозы — автомашины с установленными на них цилиндрическими цистернами. Мчится такой бензовоз и по дороге тащит за собой обрывок металлической цепочки. Для чего она? Чтобы не возникла искра и не подожгла бензин. Заряды, появляющиеся от трения бензина о стенки цистерны, собраться в опасную точку не успевают. Они по цепочке уходят в землю.

Просто и надежно.

Страшным врагом является электрическая искра на некоторых химических производствах и в шахтах. Она может взорвать целый завод и погубить под землей сотни жизней. Чтобы этого не случилось, принимают специальные меры, исключающие возникновение искрения в электрических цепях и устройствах.

Выходит, в некоторых случаях плазма может стать врагом, жестоким и коварным. Чтобы этот враг не приносил вреда, с ним борются, стараются обезвредить.

Люди научились не только заставлять плазму выполнять всевозможную работу, но и сумели там, где нужно, «расправиться» с ней, свести на нет все нежелательные последствия, которые она может вызвать.


Поединки с молниями


Многие, не знающие коварный характер молний, расчерчивающих огненными зигзагами грозовое небо, считают, что защититься от нее дело несложное. Достаточно, мол, поставить металлический штырь на крыше, соединить его с землей — и делу конец.

В действительности все обстоит иначе. Обезопасить людей, промышленные сооружения, жилые дома и другие объекты от грозовых разрядов — это значит решить целый комплекс сложных вопросов, предусмотреть все неожиданности, которые может преподнести молния.

Государство тратит большие средства, чтобы предохранить людей и народное добро от ударов молнии — плазмы, вспыхивающей в воздухе.

Поговорим вначале о защите зданий от ударов молнии. Ни один проект нового здания, особенно высотного, не утверждается, пока не будет разработана система грозозащиты.

В специальных лабораториях строят макеты таких зданий и обстреливают их искусственными молниями. Если будут обнаружены уязвимые места, грозозащита усиливается.

Даже если строится большой жилой дом с железной крышей, недостаточно заземлить ее в одном месте. Провода-токоотводы должны соединять ее через каждые двадцать пять метров периметра крыши, а также по углам.

Самые строгие требования к защите от грозы предъявляются к промышленным объектам, которые производят взрывоопасные вещества или имеют смеси пыли, паров, газов, способных взорваться. Молниеотводы на такие здания не ставятся, они располагаются вокруг здания, защищая от прямых попаданий молний большой участок. Чтобы внутри помещения не возникла искра, все металлические части оборудования заземляются.

Как видите, молнии приносят немало хлопот людям и обходятся в копеечку.

Не простое дело — защита от ударов молнии проводов, подвешенных над землей.

Вряд ли смогли бы мы регулярно слушать радиопередачи, пользоваться электрическим светом, разговаривать по телефону, если бы специалисты не придумали, как избавиться от попадания молний в провода.

При прямом ударе молнии в провод в линии связи или в линии электропередачи могут возникать напряжения в несколько миллионов вольт. Даже если разряд молнии попал не на линию, а между облаками, в проводах возникают перенапряжения в сотни тысяч вольт. Волна перенапряжения стремительно мчится вдоль проводов, может врываться в дома и учреждения и поражать людей, выводить из строя аппаратуру.

Приходилось вам видеть шеренги высоких металлических опор, к которым подвешены провода линии электропередачи? Зачем на них подвешено четыре провода, а не три, необходимых для передачи трехфазного тока?

Из-за гроз. Верхний провод, прикрепленный к самым верхушкам опор, служит для защиты остальных проводов от прямых ударов молнии. Он так и называется «тросовый молниеотвод».

А как быть в том случае, если молния все-таки ухитрится ударить в провод? Линия выйдет из строя?

Нет. В этом случае с искрой-молнией вступает в борьбу искра защитная.

На рисунке показан провод высокого напряжения, подвешенный на гирлянде изоляторов. Когда в провод ударит молния и в нем возникнет перенапряжение, изоляторы остаются невредимыми. Разряд образуется раньше между двумя защитными кольцами, смонтированными у обоих концов гирлянды. Молния лишь на мгновение замыкается на землю, и это мгновение столь коротко, что потребители даже не замечают «атаки» молнии.

Телеграфные провода защищаются от ударов молнии не только искровыми разрядниками, но и особыми плазменными устройствами — ионными разрядниками.

Вдоль линии через определенные расстояния устанавливаются эти надежные часовые, представляющие собой газоразрядные трубки, наполненные неоном или водородом. Один электрод разрядника присоединен к проводу, второй — к земле. Когда в провод ударит молния или возникнет перенапряжение от сверкнувшей неподалеку молнии, в трубке возникает плазма. Она автоматически заземляет линию. Как только заряд стечет в землю и напряжение в линии станет безопасным, разряд гаснет и линия продолжает работать как ни в чем не бывало.


Искры-грызуны и дуги-разрушительницы


Перейти на страницу:

Похожие книги

101 ключевая идея: Физика
101 ключевая идея: Физика

Цель книги — доступным и увлекательным способом познакомить читателя с физикой, привлечь внимание к знакомым предметам, раскрыть их незнакомые стороны. Здесь объясняется 101 ключевая идея великой науки, расширяющей наши знания о мире. Факты и основные понятия физики изложены так, что развивают любознательность, помогают преодолеть косность рутинного мышления, обостряют интерес к вещам, не затрагивающим нашего существования, но без которых это существование уже не мыслится; а где есть интерес, там есть желание новых знаний. От читателя не потребуется особой подготовки, кроме способности воспринимать и удивляться. Статьи расположены в алфавитном порядке. Книга предназначена для широкого круга читателей, а также учащихся школ и вузов.

Джим Брейтот , Олег Ильич Перфильев

Физика / Справочники / Образование и наука / Словари и Энциклопедии
Куда течет река времени
Куда течет река времени

Занимательный рассказ о развитии одного из фундаментальных физических понятий — понятия времени, о различных свойствах времени, их значении для исследования проблем физики элементарных частиц сверхвысоких энергий, проблем астрофизики, а также совершенствования новейших технологий. Читатели познакомятся с выдающимися учеными, посвятившими жизнь изучению всех этих вопросов.Игорь Дмитриевич Новиков (родился 10 ноября 1935 года в Москве) — российский астрофизик-теоретик и космолог. Автор (совместно с Зельдовичем) монографий "Релятивистская астрофизика" (1967), "Теория тяготения и эволюция звезд" (1971), "Строение и эволюция Вселенной" (1975). Президент Комиссии N 47 «Космология» Международного астрономического союза (1976-1979). Член-корреспондент РАН по Отделению общей физики и астрономии (астрономия) с 26 мая 2000 года. С 1994 года был директором Центра теоретической астрофизики Копенгагенского университета, где он работал с 1991 года. В 2001 году, после окончания контракта с Датской академией наук, вернулся в Россию и стал заместителем руководителя Астрокосмического Центра по науке.Новиков И. Д. Куда течет река времени?. — М.: Молодая Гвардия, 1990. — 238 с.(Эврика). — (The River of Time, translated by Vitaly I. Kisin, Cambridge University Press 1998, 2001; Il ritmo del tempo, Di Renzo Editore, Roma, 2006)

Игорь Дмитриевич Новиков

Физика / Образование и наука