Я подчеркиваю сложность метаболизма, чтобы вы увидели: невозможно до конца понять, как наш организм реагирует на продукты, которые мы едим, и содержащиеся в них нутриенты. Объяснение функции питательных веществ всего одной или даже парой этих реакций недостаточно. После потребления они взаимодействуют друг с другом и другими веществами в лабиринте метаболических реакций, происходящих в этой сотне триллионов клеток. За действие конкретного питательного вещества не отвечает какая-то отдельная реакция или механизм. Все они и многие другие связанные с ними вещества участвуют в клеточном метаболизме и преобразуются в многочисленные продукты высокоинтегрированными путями — не менее сложными, чем на рис. 7.1–7.3.
Каждое вещество проходит лабиринт реакций, поэтому оно может быть фактором влияния на самочувствие. Связь «одно вещество — одна болезнь», которую подразумевает редукционизм, популярна, но неверна. Каждое вещество, входящее в сложную систему реакций, оставляет «круги на воде», которые могут расходиться по озеру метаболизма. А в каждом кусочке пищи — десятки, а то и сотни тысяч веществ, которые попадают в организм более-менее одновременно.
Метаболизм и ферменты
Это крупные белковые молекулы, присутствующие во всех наших клетках и путем серии реакций превращающие одно (скажем, молекулу сахара), именуемое
Относительные размеры ферментов очень велики. Их молекулы могут быть в 10–20 тыс. раз больше молекул субстрата, который они обрабатывают. И правда похоже на фабрику и полено. На рис. 7.4 показан субстрат А, превращающийся в продукт Б. Однако большинство реакций не происходит изолированно: они сопряжены с последующими, где Б (теперь уже субстрат) превращается в В (новый продукт). Фермент 1 превращает А в Б, а фермент 2 — Б в В.
Рис. 7.4. Простая ферментативная реакция
Ферменты могут работать с разной силой в зависимости от запасов (количества субстрата) и потребностей (количества имеющегося в клетке продукта). Как конвейер, который движется быстрее или медленнее в зависимости от поставки сырья и спроса на готовую продукцию, ферменты меняют скорость превращения субстратов (на профессиональном языке — «активность»). Они могут катализировать даже обратные реакции, превращая продукт в субстрат. В общем, от ферментов зависит, произойдет ли реакция, а если да, то как быстро и в каком направлении.
Исходная форма ферментов напоминает цепочку аминокислот, расположенных в последовательности, которая закодирована в ДНК. Но, поскольку аминокислоты имеют химическое и физическое сродство, цепочка складывается и образует трехмерную форму, как очень длинная нить намагниченных бусин (рис. 7.5).
Рис. 7.5. Компьютерная модель фермента цАДФ-рибозы-гидролазы (CD38)
Один из способов корректировки ферментативной активности — изменение формы фермента. Это имеет серьезные последствия, потому что меняет его химические и физические свойства, а также способность модифицировать скорость реакции. Многие ученые-энзимологи поэтизируют быстроту, с которой ферменты меняют конфигурацию для выполнения своих задач. Вот показательная статья из New World Encyclopedia :
Чтобы фермент был функционален, он должен принять трехмерную форму. Как происходит этот сложный процесс, остается загадкой. Небольшая цепочка из 150 аминокислот образует фермент, имеющий невероятное число возможных конфигураций: если проверять по 1012 разных конфигураций в секунду, потребуется 1026 лет, чтобы найти верную... Но денатурировавший фермент может правильно сложиться за долю секунды, а затем участвовать в химических реакциях… [Это] показывает ошеломляющую сложность и гармонию Вселенной20.