Читаем Полярные сияния полностью

Часть горячей плазмы, которая попадает на оболочки с замкнутыми геомагнитными силовыми линиями, т. е. в области захвата, образует так называемый кольцевой электрический ток, располагающийся на удалении 2—3 радиусов Земли и идущий с востока на запад. Магнитное поле этого тока, создаваемого протонным поясом, па поверхности Земли направлено с севера на юг. Поэтому на земных магнитометрах наличие кольцевого тока проявится уменьшением горизонтальной составляющей геомагнитного поля. Это главная фаза магнитосферной бури, которая создается серией магнитосферных суббурь, во время каждой из которых идет подпитка протонного пояса (кольцевого тока).

Сопоставим развитие магнитосферной суббури, т. е. процессов в магнитосфере, с развитием суббури в полярных сияниях. Для этого обратимся к схеме (рис. 31), на которой изображены направление межпланетного магнитного поля (север—юг), плазменный слой в хвосте магнитосферы и области захваченной радиации. Широкими стрелками показаны направления движения плазмы.

В самом начале при пересоединении силовых линий межпланетного магнитного поля и геомагнитного поля происходит поджатие магнитосферы Земли с дневной стороны, или, другими словами, движение магнитопаузы к Земле (см. рис. 31, 1). Как видим, на дневной стороне в высоких широтах, где геомагнитные силовые линии входят в верхнюю атмосферу, полярные сияния должны двигаться в направлении к экватору (жирные стрелки — 2). При сжатии магнитосферы магнитное поле в хвосте будет усиливаться.

Рис. 31. Схематические диаграммы, иллюстрирующие различные магнитосферные явления на разных фазах суббури

I — начало процесса пересоединения, когда межпланетное магнитное поле поворачивается от северного направления к южному и магнитный поток с дневной стороны переносится в хвост магнитосферы: 1 — движение к Земле, 2 — движение сияний, 3 — увеличение В;

II — начальная стадия формы развития: 4 — утоньшение плазменного слоя, 5 — движение плазменного слоя к Земле, 6а, 6б — направления движения силовой линии, 7 — конвекция, 8 — движение сияний к полюсу, 9 — полярная электроструя, 10 — силовые линии магнитного поля, подобные диполю;

III — начальная стадия фазы восстановления: 11 — расширение плазменного слоя, 12 — движение плазмы к Земле, 13 — инжекция плазмы в высокоширотную ионосферу, градиентный и электромагнитный дрейфы, 14 — полярная инжекция


После этого за период времени менее 1 ч плазма совершает в хвосте магнитосферы описанное выше движение — в направлении к Земле и поперек к нейтральному слою. Когда плазменный слой начинает двигаться по направлению к Земле, в овале полярных сияний на экваториальной его кромке интенсивность полярного сияния резко увеличивается (или уярчается имеющаяся спокойная дуга полярного сияния, или возникают новые дуги). Затем сияние начинает двигаться к полюсу. Этот момент соответствует началу суббури в полярных сияниях. После уменьшения II плазменный слой наблюдается снова, вначале в ближней к Земле части хвоста (6б), а затем на больших геометрических расстояниях (11). Плазменный слой появляется значительно скорее в плоскости нейтрального слоя, чем в направлении, нормальном к этому слою. Быстрое движение форм полярных сияний в направлении к полюсу в полуночном секторе (8) происходит при утоньшении плазменного слоя на расстояниях от Земли более 18 RE. Движение сияний к полюсу связано с появлением интенсивного западного электрического тока — полярной электроструи — (9) и ее движением к полюсу. Магнитное поле Земли на расстояниях 6—10 RE меняет свою форму от «вытянутого» или «открытого» хвоста до дипольной конфигурации (10). Очевидно, ток, который является источником вытянутого в виде хвоста магнитного поля, внезапно уменьшается или частично прерывается. Этот момент совпадает с появлением западной электроструи.

Важный процесс периода суббури — струйная инжекция плазмы из хвоста магнитосферы в область захвата (13). Видимо, инжекция в область захвата происходит не вдоль всей внутренней границы плазменного слоя, а из довольно узкой области в полуночном секторе (13). Эти захваченные магнитным полем электроны являются основным источником их во внешнем радиационном поясе, а также источником электронов, которые вызывают интенсивные поглощения радиоволн в утреннем секторе на широтах зоны полярных сияний. Выше говорилось, что захваченные таким же образом протоны служат основным источником кольцевого тока и протонных полярных сияний. Рассмотрим более подробно протекание суббури в полярных сияниях.

Суббуря в полярных сияниях

Положение овала полярных сияний зависит как от местного, так и от мирового времени. Четко разделить действия этих двух факторов достаточно трудно.

Каким видит полярные сияния наблюдатель, находясь в определенной точке их зоны? Напомним, что в ночные часы овал полярных сияний будет располагаться над наблюдателем (зона и овал совпадают), а в остальное время суток (в северном полушарии) — севернее его.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже