Измерение интенсивности излучения различных линий полярных сияний имеет еще один аспект. Дело в том, что существует тесная связь между интенсивностью свечения в полосах первой отрицательной системы N2
+ (наиболее сильными являются линии 3914 и 4278 Å) и количеством электронов, создающихся при ионизации атмосферы тем пучком электронов, который вызывает это излучение. Для изучения распределения электронов в полярной ионосфере эта информация весьма важна. Основная информация об электронной концентрации получается с помощью радиометодов, главными из которых являются зондирование ионосферы с поверхности Земли (или с самолета) и с помощью ионозондов, установленных на ИСЗ. В первом случае получаем информацию о распределении концентрации электронов «внутренней» ионосферы, т. е. ионосферы ниже главного максимума ионизации в области на высоте 300—400 км. Во втором (при зондировании со спутника) — ионозонд дает информацию о внешней ионосфере, т. е. выше этого максимума. В периоды, когда происходит интенсивное вторжение заряженных частиц, особенно больших энергий, способных достигать высот нижней ионосферы (100 км и ниже), метод вертикального зондирования с Земли становится неприменимым. Радиоволны не возвращаются из ионосферы и, таким образом, не приносят информацию о распределении электронов: они поглощаются в нижней ионосфере. Зато препятствий для измерения интенсивности излучения линий 3914 и 4278 Å нет. По этим интенсивностям можно рассчитать количество электронов, образованных пучком вторгающихся электронов. В частности, по этой причине излучение в линиях 3914 и 4278 Å измерялось очень часто и поэтому известно весьма подробно. Важно отметить, что распределения по высоте интенсивностей излучения линии кислорода 5577 Å и указанных выше полос первой отрицательной системы N2+ очень похожи между собой.В процессе наблюдений удалось обнаружить линии излучения для всех возбужденных метастабильных состояний основных конфигураций нейтральных и однократно ионизованных атомов азота и кислорода. Чаще всего отмечаются излучения в результате таких переходов атомарного кислорода:
Наиболее интенсивные системы молекулярных полос излучения соответствуют разрешенным переходам, В видимой части спектра преобладают первая и вторая положительные системы полос N2
и первая отрицательная система полос N2+, полосы Мейнела N2+ доминируют в красной и ближней инфракрасной областях спектра, а полосы Лаймана—Бирджа—Хопфильда N2 — в ультрафиолетовой области.Первая отрицательная система полос O2
+ слабая, но присутствует постоянно и в большинстве случаев легко наблюдается в полярных сияниях на малых высотах.Примерно до 1953 г. фотографические спектры были единственным средством получения распределений интенсивности в спектре полярного сияния. К сожалению, эти измерения имели большие погрешности. Применение фотоэлектрических приемников произвело революцию в измерениях интенсивности в спектре полярного сияния. В этом методе ошибки связаны со стандартными источниками для калибровки. Поэтому данных об интенсивности излучений (особенно слабых) все еще недостаточно.
Электроны или протоны данной энергии отдают свою энергию в ограниченной области высот в атмосфере. Поэтому возбуждение атомов или молекул (и ионов) на определенной высоте в значительной степени вызываются электронами или протонами в ограниченном интервале энергий. Следовательно, спектральные характеристики определяются видом частицы (электрон или протон) и ее удельной энергией, а также плотностью атмосферы и ее составом. Поэтому большинство резко выраженных вариаций в спектре сияния обусловлено именно вариациями его высоты.
Спектральные различия, которые замечены между сияниями разных типов, также, видимо, обусловлены высотными изменениями (вариациями).
Полярные сияния типа
Хорошие количественные измерения спектров полярных сияний трудно получить по следующим причинам:
1. Из-за сложной структуры полярного сияния, причем наблюдатель с Земли автоматически суммирует эмиссию вдоль луча зрения своего прибора.