Orlandine found the crust of this planetoid rather interesting, and wondered what spectacular events had resulted in such a high concentration of sodium chloride—in the form of frozen brine — and the abundance of other chlorine compounds. Perhaps the planetoid had formed from the debris of a gas giant, for similar concentrations also could be found at the Cassius project. The presence of these chemicals indicated the possible presence of something else here, and eighty yards down she found it: a layer of pure chlorine frozen solid at these temperatures. Whatever process had formed this planetoid must have involved extremely rapid freezing for so reactive a compound not to combine with others. Perfect.
The drill bit finally broke through a hundred yards down and, until Orlandine injected sealant around the shaft, the
The USER device lay at the sea’s precise centre, the massive singularity it contained holding it in place. From this spherical core protruded numerous structures like aerial-clad city blocks. Just under the planetoid’s crust she detected other devices, perhaps sensors or weapons. One of these lay only half a mile away from her, so instantly she trained
Now maintaining close contact with the ship and all its sensors, ready to launch at a moment’s notice, she eased herself from her seat and moved back into the ship’s hold. Jain technology, inevitably, held the solution. Linking to her nanoassembler, she input the parameters for the nanomachines she required. It soon became apparent that nanomachines would not work in such low temperatures, so a mycelium would be required: one that would spread around the interior of the planetoid’s crust below her, one that could inject itself through ice and rock to seek out the deposits of pure chlorine. Unfortunately she needed to remain here while the mycelium performed its task, because it would need to be powered by the ship’s fusion reactor.
The basic structure would be a skein of nanotubes created by microscopic factories catalysing carbon from the methane. Those same nanotubes, at this temperature, would also be superconductive so there would be no problem supplying power. Sensors would keep the main spread of the mycelial threads on the undersurface of the crust; micromotors would be laid every few tenths of an inch to stretch or slacken nanotubes and so guide growth; quantum processors, manufactured from the same carbon as the nanotubes, would control the whole process. However, at frequent intervals, the growing mycelium would inject nanotubes into the rock and ice above to seek out chlorine deposits. These would require nanoscopic drilling heads and peristaltic inner layers to transport chlorine molecules back down to the main mycelium and into the methane sea. Methodically, and brilliantly, Orlandine began constructing her nanomycelium. After an hour or so, she paused, remembering something else that would be required: a bright blue light to shine on the subject.
She smiled nastily to herself.
20