Читаем Полное руководство. С# 4.0 полностью

Но переопределять виртуальный метод совсем не обязательно. Ведь если в произ водном классе не предоставляется собственный вариант виртуального метода, то ис пользуется его вариант из базового класса, как в приведенном ниже примере. /* Если виртуальный метод не переопределяется, то используется его вариант из базового класса. */ using System; class Base { // Создать виртуальный метод в базовом классе. public virtual void Who { Console.WriteLine("Метод Who в классе Base"); } } class Derivedl : Base { // Переопределить метод Who в производном классе. public override void Who { Console.WriteLine("Метод Who в классе Derived1"); } } class Derived2 : Base { // В этом классе метод Who не переопределяется. } class NoOverrideDemo { static void Main { Base baseOb = new Base; Derived1 dOb1 = new Derived1; Derived2 dOb2 = new Derived2; Base baseRef; // ссылка на базовый класс baseRef = baseOb; baseRef.Who; baseRef = dOb1; baseRef.Who; baseRef = dOb2; baseRef.Who; // вызывается метод Who из класса Base } }

Выполнение этого кода приводит к следующему результату. Метод Who в классе Base. Метод Who в классе Derived1 Метод Who в классе Base

В данном примере метод Who не переопределяется в классе Derived2. Поэтому для объекта класса Derived2 вызывается метод Who из класса Base.

Если при наличии многоуровневой иерархии виртуальный метод не переопределя ется в производном классе, то выполняется ближайший его вариант, обнаруживаемый вверх по иерархии, как в приведенном ниже примере. /* В многоуровневой иерархии классов выполняется тот переопределенный вариант виртуального метода, который обнаруживается первым при продвижении вверх по иерархии. */ using System; class Base { // Создать виртуальный метод в базовом классе. public virtual void Who { Console.WriteLine("Метод Who в классе Base"); } } class Derivedl : Base { // Переопределить метод Who в производном классе. public override void Who { Console.WriteLine("Метод Who в классе Derived1"); } } class Derived2 : Derived1 { // В этом классе метод Who не переопределяется. } class Derived3 : Derived2 { // И в этом классе метод Who не переопределяется. } class NoOverrideDemo2 { static void Main { Derived3 dOb = new Derived3; Base baseRef; // ссылка на базовый класс baseRef = dOb; baseRef.Who; // вызов метода Who из класса Derived1 } }

Вот к какому результату приводит выполнение этого кода. Метод Who в классе Derivedl

В данном примере класс Derived3 наследует класс Derived2, который наследует класс Derived1, а тот, в свою очередь, — класс Base. Как показывает приведенный выше результат, выполняется метод Who, переопределяемый в классе Derived1, поскольку это первый вариант виртуального метода, обнаруживаемый при продви жении вверх по иерархии от классов Derived3 и Derived2, где метод Who не пере определяется, к классу Derived1.

И еще одно замечание: свойства также подлежат модификации ключевым словом virtual и переопределению ключевым словом override. Это же относится и к ин дексаторам. Что дает переопределение методов

Благодаря переопределению методов в C# поддерживается динамический поли морфизм. В объектно-ориентированном программировании полиморфизм играет очень важную роль, потому что он позволяет определить в общем классе методы, которые становятся общими для всех производных от него классов, а в производных классах — определить конкретную реализацию некоторых или же всех этих методов. Переопределение методов — это еще один способ воплотить в C# главный принцип полиморфизма: один интерфейс — множество методов.

Удачное применение полиморфизма отчасти зависит от правильного понимания той особенности, что базовые и производные классы образуют иерархию, которая про двигается от меньшей к большей специализации. При надлежащем применении ба зовый класс предоставляет все необходимые элементы, которые могут использоваться в производном классе непосредственно. А с помощью виртуальных методов в базовом классе определяются те методы, которые могут быть самостоятельно реализованы в производном классе. Таким образом, сочетая наследование с виртуальными методами, можно определить в базовом классе общую форму методов, которые будут использо ваться во всех его производных классах. Применение виртуальных методов

Перейти на страницу:

Похожие книги

Основы программирования в Linux
Основы программирования в Linux

В четвертом издании популярного руководства даны основы программирования в операционной системе Linux. Рассмотрены: использование библиотек C/C++ и стан­дартных средств разработки, организация системных вызовов, файловый ввод/вывод, взаимодействие процессов, программирование средствами командной оболочки, создание графических пользовательских интерфейсов с помощью инструментальных средств GTK+ или Qt, применение сокетов и др. Описана компиляция программ, их компоновка c библиотеками и работа с терминальным вводом/выводом. Даны приемы написания приложений в средах GNOME® и KDE®, хранения данных с использованием СУБД MySQL® и отладки программ. Книга хорошо структурирована, что делает обучение легким и быстрым. Для начинающих Linux-программистов

Нейл Мэтью , Ричард Стоунс , Татьяна Коротяева

ОС и Сети / Программирование / Книги по IT
C++
C++

С++ – это универсальный язык программирования, задуманный так, чтобы сделать программирование более приятным для серьезного программиста. За исключением второстепенных деталей С++ является надмножеством языка программирования C. Помимо возможностей, которые дает C, С++ предоставляет гибкие и эффективные средства определения новых типов. Используя определения новых типов, точно отвечающих концепциям приложения, программист может разделять разрабатываемую программу на легко поддающиеся контролю части. Такой метод построения программ часто называют абстракцией данных. Информация о типах содержится в некоторых объектах типов, определенных пользователем. Такие объекты просты и надежны в использовании в тех ситуациях, когда их тип нельзя установить на стадии компиляции. Программирование с применением таких объектов часто называют объектно-ориентированным. При правильном использовании этот метод дает более короткие, проще понимаемые и легче контролируемые программы. Ключевым понятием С++ является класс. Класс – это тип, определяемый пользователем. Классы обеспечивают сокрытие данных, гарантированную инициализацию данных, неявное преобразование типов для типов, определенных пользователем, динамическое задание типа, контролируемое пользователем управление памятью и механизмы перегрузки операций. С++ предоставляет гораздо лучшие, чем в C, средства выражения модульности программы и проверки типов. В языке есть также усовершенствования, не связанные непосредственно с классами, включающие в себя символические константы, inline-подстановку функций, параметры функции по умолчанию, перегруженные имена функций, операции управления свободной памятью и ссылочный тип. В С++ сохранены возможности языка C по работе с основными объектами аппаратного обеспечения (биты, байты, слова, адреса и т.п.). Это позволяет весьма эффективно реализовывать типы, определяемые пользователем. С++ и его стандартные библиотеки спроектированы так, чтобы обеспечивать переносимость. Имеющаяся на текущий момент реализация языка будет идти в большинстве систем, поддерживающих C. Из С++ программ можно использовать C библиотеки, и с С++ можно использовать большую часть инструментальных средств, поддерживающих программирование на C. Эта книга предназначена главным образом для того, чтобы помочь серьезным программистам изучить язык и применять его в нетривиальных проектах. В ней дано полное описание С++, много примеров и еще больше фрагментов программ.

Бьёрн Страуструп , Бьярн Страустрап , Мюррей Хилл

Программирование, программы, базы данных / Программирование / Книги по IT
Самоучитель UML
Самоучитель UML

Самоучитель UMLПервое издание.В книге рассматриваются основы UML – унифицированного языка моделирования для описания, визуализации и документирования объектно-ориентированных систем и бизнес-процессов в ходе разработки программных приложений. Подробно описываются базовые понятия UML, необходимые для построения объектно-ориентированной модели системы с использованием графической нотации. Изложение сопровождается примерами разработки отдельных диаграмм, которые необходимы для представления информационной модели системы. Цель книги – помочь программистам освоить новую методологию разработки корпоративных программных приложений для последующего применения полученных знаний с использованием соответствующих CASE-инструментов.

Александр Васильевич Леоненков , Александр Леоненков

Зарубежная компьютерная, околокомпьютерная литература / Программирование / Прочая компьютерная литература / Книги по IT