Читаем Полный справочник медицинской аппаратуры полностью

4) машинный (компьютерный) синтез томограммы по совокупности данных измерения, относящихся к выбранному слою;

5) построение изображения исследуемого слоя на экране видеомонитора (дисплея).

В системах компьютерных томографов сканирование и получение изображения происходят следующим образом. Рентгеновская трубка в режиме излучения «обходит» голову по дуге 240°, останавливаясь через каждые 3° этой дуги и делая продольное перемещение. На одной оси с рентгеновским излучателем закреплены детекторы – кристаллы йодистого натрия, преобразующие ионизирующее излучение в световое. Последнее попадает на фотоэлектронные умножители, превращающие эту видимую часть в электрические сигналы. Электрические сигналы подвергаются усилению, а затем преобразованию в цифры, которые вводят в ЭВМ. Рентгеновский луч, пройдя через среду поглощения, ослабляется пропорционально плотности тканей, встречающихся на его пути, и несет информацию о степени его ослабления в каждом положении сканирования. Интенсивность излучения во всех проекциях сравнивается с величиной сигнала, поступающего с контрольного детектора, регистрирующего исходную энергию излучения сразу же на выходе луча из рентгеновской трубки.

Следовательно, формирование показателей поглощения (ослабления) для каждой точки исследуемого слоя происходит после вычисления отношения величины сигнала на выходе рентгеновского излучателя к значению его после прохождения объекта исследования (коэффициенты поглощения).

В ЭВМ выполняются математическая реконструкция коэффициентов поглощения и пространственное их распределение на квадратной многоклеточной матрице, а полученные изображения передаются для визуальной оценки на экран дисплея.

За одно сканирование получают два соприкасающихся между собой среза толщиной 10 мм каждый. Картина среза восстанавливается на матрице размером 160 х 160 мм.

Полученные коэффициенты поглощения выражают в относительных единицах шкалы, нижняя граница которой (-1000 ед. Н.) (ед. Н. – единицы Хаунсфильда, или числа компьютерной томографии) соответствует ослаблению рентгеновских лучей в воздухе, верхняя (+1000 ед. Н.) – ослаблению в костях, а за ноль принимается коэффициент поглощения воды. Различные ткани мозга и жидкие среды имеют разные по величине коэффициенты поглощения. Например, коэффициент поглощения жира находится в пределах от -100 до 0 ед. Н., спинно-мозговой жидкости – от 2 до 16 ед. Н., крови – от 28 до 62 ед. Н. Это обеспечивает возможность получать на компьютерных томограммах изображение основных структур мозга и многих патологических процессов в них. Чувствительность системы в улавливании перепада рентгеновской плотности в обычном режиме исследования не превышает 5 ед. Н., что составляет 0,5 %.

На экране дисплея высоким значениям плотности (например, кости) соответствуют светлые участки, низким – темные. Градационная способность экрана составляет 15–16 полутоновых ступеней, различаемых человеческим глазом. На каждую ступень, таким образом, приходится около 130 ед. Н.

Для полной реализации высокой разрешающей способности томографа по плотности в аппарате предусмотрены средства управления так называемой шириной окна и его уровня (положения), чтобы дать рентгенологу возможность анализировать изображение на различных участках шкалы коэффициентов поглощения. Ширина окна – это величина разности наибольшего и наименьшего коэффициентов поглощения, соответствующая указанному перепаду яркости. Положение, или уровень, окна (центр окна) – это величина коэффициентов ослабления, равная середине окна и выбираемая из условий наилучшего выявления плотностей интересующей группы структур или тканей. Важнейшей характеристикой является качество получаемого изображения.

Известно, что качество визуализации анатомических образований головного мозга и очагов поражения зависит в основном от двух факторов: размера матрицы, на которой строится томограмма, и перепада показателей поглощения. Величина матрицы может оказывать существенное влияние на точность диагностики. Так, количество ошибочных диагнозов при анализе томограмм на матрице 80 х 80 клеток составляло 27 %, а при работе на матрице 160 х 160 уменьшилось до 11 %.

Перейти на страницу:

Похожие книги

Основы диагностики психических расстройств
Основы диагностики психических расстройств

Авторы руководства придерживаются взглядов петербургской психиатрической школы. Руководство написано в классическом стиле. С современных позиций рассмотрена патология всех психических сфер: восприятия, ориентировки, самосознания, памяти, мышления, речи, интеллекта, эмоций, воли, внимания и др. Сведения о расстройствах психической сферы и их диагностическом значении предваряются определением и психофизиологической характеристикой ее нормальной функции. Приведены рекомендации по выявлению психической патологии. Издание содержит подробные указатели: предметный и нозологический. Руководство предназначено психиатрам, неврологам, врачам общей практики, студентам медицинских вузов и психологических факультетов. Под редакцией проф. Ю. А. Антропова.  

Н. Г. Незнанов , Юрий Антропов

Медицина / Психология / Образование и наука