Используются варианты технической защиты от вибрации:
1) динамическое гашение колебаний (дополнительные реактивные импедансы) – присоединение к защищенному объекту системы, реакция которой уменьшает размах вибрации в точках присоединения системы;
2) изменение конструктивных элементов и строительных конструкций (увеличение жесткости системы – введение ребер жесткости);
3) виброизоляция. Этот способ заключается в уменьшении передачи колебаний от источника возбуждения защищаемому объекту при помощи устройств, помещенных между ними (резиновых, пружинных виброизоляторов);
4) активная виброзащита.
Общие требования к средствам индивидуальной защиты (СИЗ) от вибраций определены в ГОСТе 12.4.002-97 ССБТ «Средства индивидуальной защиты рук от вибрации. Общие технические требования» и ГОСТом 12.4.024-76 «Обувь специальная виброзащитная».
Фактор радиации. Лучевая болезнь. Профилактика
При оценке физических свойств воздушной среды существенное значение имеет радиоактивность.
Некоторые химические элементы радиоактивны (их самопроизвольный распад и превращение в элементы с другими порядковыми номерами сопровождается излучением). При распаде радиоактивного вещества его масса с течением времени уменьшается. Теоретически вся масса радиоактивного элемента исчезает за бесконечно большое время. Время, по истечении которого масса уменьшается вдвое, называется периодом полураспада. Для разных радиоактивных веществ период полураспада изменяется в широких пределах: от нескольких часов (у Ar41
он равен 2 ч) до нескольких миллиардов лет (U238 – 4,5 x 109 лет). В природе существуют три основных вида радиоактивного излучения – α-, β– и γ-.γ-излучение представляет собой электромагнитное излучение высокой энергии и обладает наибольшей проникающей способностью. Соответственно защита от внешнего γ-излучения представляет наибольшие проблемы.
δ – излучение имеет корпускулярную природу и представляет собой поток отрицательно заряженных частиц (электронов). δ-излучение обладает меньшей проникающей способностью. Защититься от этого излучения при внешнем источнике можно сравнительно легко. В принципе, β-частицы задерживаются неповрежденной кожей. Однако при поступлении внутрь организма β-активные радионуклиды испускают хорошо поглощаемые тканями организма δ-частицы. Возникающие при этом в организме разрушения значительно превосходят таковые, производимые γ-излучением.
α-излучение представляет собой поток положительно заряженных частиц с зарядом 2 и массой, равной 4 (ядра гелия). Этот вид излучения легко поглощается любой средой. Защититься от него можно буквально листом бумаги. Однако поступление α-излучателя внутрь организма может вызвать трагические последствия.
Процесс радиоактивного распада (перехода радиоактивного элемента в другой химический элемент) сопровождается излучением одного или нескольких видов. В соответствии с тем, какой вид излучения характерен для радиоактивного распада данного изотопа, выделяют γ-активные изотопы (например, цезий-137), δ-излучатели (например, стронций-90) и α-излучатели (например, большинство изотопов плутония).
Активностью радионуклида называется величина, которая характеризуется числом распада радионуклидов в единицу времени или числом радиопревращений в единицу времени [Беккерель – Бк].
Количественной характеристикой источника излучения служит активность, выражаемая числом радиоактивных превращений в единицу времени. В СИ единицей активности является беккерель (Бк) – 1 распад в секунду (с—1). Иногда используется внесистемная единица кюри (Ku), соответствующая активности 1 г радия. Соотношение этих единиц определяется следующей формулой: 1 Ku = 3,7 x 1010 Бк.
Интенсивность α– и β-излучения может быть охарактеризована активностью на единицу площади (с—1 м—2). Интенсивность γ-излучения характеризуется мощностью экспозиционной дозы.
Экспозиционная доза измеряется по ионизации воздуха и равна количеству электричества, образующегося под действием γ-излучения в 1 кг воздуха. В СИ экспозиционная доза выражается в кулонах на кг (Кл/кг).
Популярна также внесистемная единица экспозиционной дозы – рентген. Это доза γ-излучения, при которой в 1 см3
воздуха при нормальных физических условиях (температуре 0 °C и давлении 760 мм рт. ст.) образуется 2,08 x 109 пар ионов, несущих одну электростатическую единицу количества электричества.Мощность экспозиционной дозы отражает скорость накопления дозы и выражается в Кл/кгс (в СИ) или в Р/ч (во внесистемных единицах).