Читаем Получение энергии. Лиза Мейтнер. Расщепление ядра полностью

«Я нашла эти опыты столь интересными, что как только они появились в Nuovo Cimento и Nature, я поговорила с Отто Ганом о том, чтобы возобновить наше сотрудничество после многолетнего перерыва с целью решения этих проблем».

Однако Ган принял предложение об исследовании урана из параллельного проекта. Немецкий физик Аристид фон Гроссе (1905-1985) предположил, что один из элементов, обнаруженных Ферми при бомбардировке урана нейтронами, — протактиний. Эта гипотеза ставила под сомнение существование трансурановых элементов, так как атомное число протактиния (91) меньше, чем у урана. Ган решил проверить, так ли это, то есть по существу он заинтересовался той же проблемой, что и Мейтнер, хотя подошел к ней с другой стороны.

Кроме исследовательской группы Гана и Мейтнер в Берлине, возникла еще одна — в Париже, в нее входили Ирен Кюри и Фредерик Жолио. Началось научное соревнование. В Беркли также появилась исследовательская группа, преследовавшая ту же цель. Исследование урана должно было раскрыть новые тайны, и каждый хотел быть первооткрывателем.

Однако исследователи столкнулись с тем, что куски головоломки не желали складываться воедино. Позже стало понятно, что несоответствия в исследованиях носят фундаментальный характер и связаны с двумя ошибочными предположениями, использовавшимися для интерпретации полученных данных.


После появления статей Ферми увидела свет и статья фон Гроссе и Агрусса, в которой было написано, что, вероятно, опыты Ферми относятся не к элементу 93, а скорее к элементу 91 — экатанталу [протактинию]. После этих публикаций Мейтнер и я решили повторить эксперименты Ферми и проверить догадки Гроссе.

Отто Ган


Во-первых, бомбардировка нейтронами не должна была сильно воздействовать на ядро атома. Считалось, что самым большим последствием может быть испускание альфа-частицы.

Эта идея опиралась на теорию туннельного эффекта Гамова.

Используя постулаты квантовой физики, Гамов пришел к выводу, что только микрочастицы, полученные в результате альфа-распада, могут пройти энергетический барьер ядра и покинуть его. Проще говоря, в соответствии с туннельным эффектом субатомная частица может преодолеть потенциальный барьер, соединяющий ее с атомом, и высвободиться, хотя ее кинетической энергии для этого, согласно постулатам классической физики, недостаточно.

Немецкий физик Ида Ноддак (1896-1978) была единственной, кто сомневался в том, что из ядра могут ускользать только микрочастицы. Ноддак, получившая известность после открытия элемента рения и даже несколько раз номинированная на Нобелевскую премию, хотя так и не получившая ее, критично отнеслась к опытам Ферми, считая, что ядра атомов могут делиться на «осколки разных размеров, представляющие собой изотопы уже известных элементов, отличных от облученных». Таким образом, она стала первым ученым, говорившим о ядерном расщеплении. Однако Ноддак не подтвердила эту догадку экспериментально, поэтому коллеги не приняли ее доводы.

Вторая теория, затруднявшая понимание процессов, происходящих при бомбардировке урана, носила химический характер. Для химиков элементы, находящиеся в таблице дальше урана, должны были сохранять химическое сходство с элементами, находящимися в третьем ряду переходных элементов, где расположены рений (Re), осмий (Os), иридий (1г). Поэтому вещества, предположительно находившиеся дальше урана, получили временное название экарений, экаосмий и так далее. Химики даже предсказывали, какими характеристиками должны обладать такие элементы. Однако посылка была неверной, так как на самом деле эти вещества относятся к группе, которую сегодня мы называем лантанидами, или редкоземельными элементами.



ГАМОВ И ТУННЕЛЬНЫЙ ЭФФЕКТ

Перейти на страницу:

Похожие книги

Суперсила
Суперсила

Наука во все времена стремилась построить целостную картину окружающего мира. В последние десятилетия физики как никогда приблизились к осуществлению этой мечты: вырисовываются перспективы объединения четырех фундаментальных взаимодействий природы в рамках одной суперсилы, и физика микромира все теснее сливается с космологией – теорией происхождения и эволюции Вселенной.Обо всем этом в популярной и увлекательной форме рассказывает книга известного английского ученого и популяризатора науки Пола Девиса (знакомого советскому читателю по книге "Пространство и время в современной картине Вселенной". – М.: Мир, 1978).Адресована всем, кто интересуется проблемами современной фундаментальной науки, особенно полезна преподавателям и студентам как физических, так и философских факультетов вузов.

Пол Девис

Физика / Образование и наука
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература