Этот эффект можно наблюдать, опуская руку в воду, текущую с различной скоростью. На рисунке 95 показано обтекание твердого тела потоком воздуха, при различной скорости. Подчеркнем, что более скоростной поток создает не только более сильную турбулентность, но и увеличивает ее след за объектом. Интересно расположение вихрей. Более или менее стабильные вихри, расположенные в одном месте, определяются формой твердого тела. В атмосфере такие вихри мы называем роторами
. Естественно, эти роторы могут отрываться потоком и уносится, но их место занимают новые. В основном, они стабильны и занимают свое место до тех пор, пока существует поток с определенными параметрами. Если скорость потока сильно увеличится, роторы унесет, на их месте будет сплошная турбулентность.Рис. 95
.Как гласит закон Ньютона, силы, с которыми тело действует на поток эквивалентны и противоположны тем, которые действуют на тело со стороны потока. Эти силы можно наблюдать, выставляя руку в окно автомобиля, движущегося с различными скоростями. Испытываемая сила сопротивления определяется разностью давлений спереди и сзади руки. Чем больше сила сопротивления, тем сильнее турбулентность за рукой. Кроме скорости потока, очень важным фактором является форма объекта. Если предмет имеет острые кромки, то невозможно безотрывное обтекание поверхностей из-за инерции молекул воздуха. На рисунке 96 показаны тела различной формы и модель их обтекания. На первой картинке изображено сечение объекта, создающего минимальное сопротивление и минимальную турбулентность. Самолеты и лодки очень похожи на него, а деревья, растущие в районах с сильными и частыми ветрами, стремятся к подобной конфигурации. На других картинках показано, как острые кромки или большая кривизна поверхности инициируют турбулентность.
Рис. 96.
Теперь понятно, что любой предмет на земной поверхности является турбулизатором движущегося воздуха, а интенсивность турбулентности зависит от скорости ветра, размеров и формы горы, здания или любого другого объекта. Турбулентность, вызванная любыми твердыми телами, расположенными на земной поверхности, ограничивается слоем толщиной до 500 м над самым высоким из них. В предыдущей главе, в таблице мы назвали этот слой переходным. В этом слое имеет место нарушение ламинарности и равномерности потока. Величина объектов, стоящих на пути воздушного потока, определяет начальные размеры вихрей турбулентности. Чем больше преграда, тем больше вихри, но они могут быстро разделиться на более мелкие. Обычно объект создает начальный вихрь в 1/10 — 1/7 своего размера. Таблица, приведенная ниже, дает примерный диаметр вихрей для некоторых территорий.
Примерные диаметры вихрей турбулентности
Город или лес… 2,0 м
Отдельностоящие дома… 0,5 м
Скошеное поле (стерня)… 0,1 м
Скошенная трава… 10 мм
Океан, большое озеро… 0,3 мм
Рассмотрим влияние скорости ветра. При слабом ветре турбулентность слаба или отсутствует совсем. В средний ветер могут формироваться вихри, и тогда для наблюдателя ветер будет быстро меняться, в том числе и по направлению. В более сильный ветер (более 30 км/ч) вихри могут быть очень интенсивными, более мелкими и сноситься потоком, пока не разрушатся. В этом случае будут заметны существенные изменения в скорости ветра, а изменения в направлении слабо выражены.
Сила ветра и энергия вихрей турбулентности пропорциональна квадрату скорости. То есть, если скорость ветра увеличилась в два раза, то сила его воздействия увеличится вчетверо. Вихри, вызванные более сильным ветром, будут также более интенсивными. Эту мысль стоит выделить: Мощность турбулентности увеличивается с квадратом скорости ветра
.ТЕРМИЧЕСКАЯ ТУРБУЛЕНТНОСТЬ.
Второй причиной турбулентности в атмосфере является тепловая конвекция или термичность. Как показано на рисунке 97, когда образуется восходящий тепловой поток, он вторгается в воздух над ним и приводит этим к образованию вихрей турбулентности и изменению других параметров окружающего воздуха.
Рис. 97.