Рисунок 172 иллюстрирует, как в слабый ветер воздух может двигаться к месту образования термика со всех сторон. Этот процесс ярко выражен в дни с мощной термичностью и может ввести в заблуждение по поводу направления ветра у земли, что очень важно на посадке. Когда в метеосводке говорят о том, что ветер слабый, переменных направлений, то это указывает на термические процессы. В сильный ветер не будет изменения направления ветра, но он будет порывистым.
Рис. 172
.Пока термик поднимается первые 300 м, он может подсасывать окружающий воздух со всех сторон. Эта тенденция к конвергенции является причиной затягивания парящих летательных аппаратов к центру потока, так что надо уменьшать угол крена для движения по желаемой окружности. С подъемом может быть придется крен увеличивать.
В основном, у земли турбулентность в термиках выше, а с высотой поток становится ровнее. Термики часто проходят через слои инверсии, что их притормаживает и добавляет турбулентность на высоте инверсии от среза. В ветренную погоду термики могут также замедляться в подъеме из-за перемешивания слоев и турбулентности нагретого воздуха у земли, как показано на рисунке 173. Это очень турбулизирует восходящий поток.
Рис. 173.
РЕАЛЬНЫЙ ГРАДИЕНТ
Мы говорили во второй главе, что поднимающийся или нагревающийся воздух приводит к нестабильности. Термик является порцией воздуха, которая и нагревается и поднимается. Давайте рассмотрим как на него влияет типичный градиент температуры.
На рисунке 174 показано в среднем изменение градиента у земли в течение суток. Утром мы видим наличие инверсионного слоя у земли. Вспомним, что градиент — это просто график изменения температуры от высоты. Инверсия — это слой, где этот график показывает, что воздух более теплый или недостаточно холодный, чтобы быть нестабильным.
Рис. 174.
Утренняя приземная инверсия объясняется тем, что земля за ночь остыла и остудила нижний слой воздуха. В горах ночные бризы вниз по склону могут создать толстый слой холодного воздуха у земли, то есть толстый слой инверсии (не редкость 300 м). Вечерняя термичность, облака и ветер могут уменьшать толщину инверсионного слоя из-за перемешивания воздуха в нижних слоях и уменьшения потери тепла поверхностью излучением.
Возьмем точку на оси температур, например, 19 или 21° (график на рисунке 175). Термический поток с такой начальной температурой поднимается в приземном слое инверсии, затухая, до выравнивания температур.
Рис. 175
.На высоте, где температуры выравниваются, подъем прекращается, начинается перемешивание с окружающим воздухом. Если прогрев очень сильный и температура воздуха у поверхности больше 23°, то поток пробивает инверсию. Этот процесс продолжается, что приводит к прогреву слоя воздуха у поверхности. Со временем толщина прогревающегося слоя увеличивается. На рисунке 174 это отражается изменением графика в нижней части.
Усиление солнечного прогрева поверхности приводит к увеличению толщины прогреваемого слоя. Увеличение температуры из-за прогрева приводит к подъему нижней границы слоя инверсии. Из-за своеобразной формы на графике это часто называют курок температуры (trigger temperature), образно говоря, нажав на который, природа выпускает термические потоки.
Как мы видим на графике (рис. 174) приземная инверсия постепенно "размывается" теплым воздухом. Позже, к вечеру этот процесс идет в обратном направлении. Очень сильная инверсия, бывающая после ясных холодных ночей приводит к затягиванию времени на прорыв слоя инверсии и обещает хорошую термичность до позднего вечера. В таких условиях земля прогревается быстро, потому что тепловая энергия как бы попадает в ловушку в нижнем слое воздуха. Это может проявиться в том, что вдруг возникает термичность, хотя до этого момента ничего не было. В
Некоторые выводы:
Термическая активность
Безоблачные ночи приводят к толстому, стабильному слою инверсии у земли, что задерживает термическую активность на следующий день.
Ясный день обещает хороший прогрев и термическую активность.
Важным фактором, определяющим время появления термических потоков, является разность температур внизу и вверху приземного инверсионного слоя
ГРАДИЕНТ ТЕМПЕРАТУРЫ НА ВЫСОТЕ