Трение по традиции разделяют на трение покоя, трение скольжения и трение качения. Самым важным в технике считают трение скольжения одного материала по другому, которое в свою очередь разделяют на сухое трение и трение с применением смазки (жидкое). Для вычисления силы сухого трения скольжения используют коэффициент трения μ, значения которого определяют опытным путем и сводят в таблицы. Это большая работа. Например, из справочника можно узнать, что коэффициент μ для трения дерева по дереву равен 0.25. Это означает, что сложить штабель досок методом надвигания доски на доску будет в четыре раза легче, чем просто поднимать доску на грудь и опускать её на штабель. Что подтверждается практикой работы на лесопилке. Формулу для сухого трения принято записывать в следующем виде: Fтр = μN (17.1), где N = сила, с которой тело действует на опору. Эта сила равна весу тела при горизонтальном скольжении. В других случаях она зависит от угла наклона. Вот почему на склоне горки сани легче скользят. Это потому что сила трения меньше.
Силой трения покоя называют усилие, которое необходимо приложить, чтобы сдвинуть тело с места. Эта сила больше силы трения скольжения. Объясняется это деформацией опоры. За время остановки тела поверхность опоры успевает прогнуться и тело оказывается во впадинке. Чтобы тело вытащить из впадинки, необходимо приложить большее усилие, чем при скольжении по гладкой поверхности.
Трение называют жидким, если между трущимися поверхностями имеется смазка. Для жидкого трения нет простой формулы, аналогичной (176.1), так как сила жидкого трения сильно зависит от вида смазки. Опыты показывают, что для материалов из таблицы жидкое трение во много раз меньше сухого трения. Очевидно, при наличии смазки трение покоя практически равно трению скольжения. Для жидкой опоры, например, воды, трение покоя равно нулю. Это значит, что притянуть к причалу океанский лайнер сможет даже ребенок, если у него хватит терпения. На практике этому мешают волны, ветер, или течение возле причала.
Очевидно, тела могут не только скользить, но и сталкиваться между собой. В момент соударения форма тел меняется. Если после соударения форма тел восстанавливается, а их температура не меняется, такое соударение называют упругим. Очевидно, при упругом столкновении сохраняется полный импульс. Упругость материалов удобнее изучать на винтовой пружине, которая легко сжимается после растяжения.
Строго говоря, растянуть стальную проволоку голыми руками невозможно. Зато её легко согнуть. При «растягивании» пружины происходит вот что. Каждый миллиметр витка пружины изгибается на малый угол. Эти изгибы складываются по всей длине витка так, что суммарный изгиб обеспечивает расхождение между концом и началом витка на два-три миллиметра. Эти миллиметры суммируются, в результате пружину можно растянуть на 30–40 мм. Если конец пружины отпустить, её витки вернутся в исходное положение. Это опыт можно повторять много раз с гарантированным результатом. На этом принципе основано действие пружинного динамометра – простейшего школьного прибора для измерения силы или веса.
§ 18. Энергия пружины
Вес равен силе притяжения. Поэтому при подвешивании тела к пружинным весам прибор показывает его вес. В отличие от динамометра рычажные весы показывают не вес тела, а его массу. В чем тут разница. Если, к примеру, на Луне подвесить к пружинным весам гирю весом 240 Н, то стрелка покажет всего 40 Н, так как гравитация Луне в шесть раз меньше. При взвешивании на рычажных весах применяют набор эталонных гирь. Но эталонные гири на Луне тоже весят в шесть раз меньше. Очевидно, для уравновешивания гири весом 240 Н на рычажные весы придется поставить набор гирь, которые в сумме дают те же 240 Н.
Но вернёмся на Землю. Подвесим на штативе школьный динамометр и начнем нагружать его гирьками по 1 Н. Это очень простой опыт. На первом шаге стрелка опустится на 1 деление, например x (икс) см. На втором шаге стрелка опустится на 2x см. На пятом шаге стрелка опустится на 5x см и т. д. Это значит, что упругая сила F пружины, равная весу груза, связана с растяжением пружины простым линейным уравнением: F = kx (18.1). Нас интересует энергия, запасённая в растянутой пружине. Очевидно, эта энергия равна работе, произведенной против силы упругости E = A = Fs (18.2). Допустим, s = x (18.3). Но чему равна сила на пути от нуля до x? Вначале она была равна нулю, а в конце пути равна F. Значит, среднее значение силы на участке равно F/2. Подставляя F/2 = kx/2 в (18.2), получаем, с учетом (18.3): E = kx2
/2 (18.4). Мы выяснили, что энергия пружины зависит от длины х. Поэтому её следует отнести к виду потенциальной энергии, которая, по определению, зависит от расстояния. Коэффициент k принято называть жёсткостью пружины. Каждая пружина обладает своей жёсткостью.