Рассмотрим структуру электрического поля между обкладками сухого конденсатора. В процессе зарядки электроны вытесняются полем генератора на поверхность одной обкладки, где они равномерно распределяются по всей ее площади. Суммарному заряду Q электронов на данной обкладке соответствует равный по величине заряд протонов на другой обкладке. Между этими зарядами возникают кулоновские силы притяжения. Заметим, что обкладки нельзя считать точечными зарядами, так как зазор d намного меньше длины и ширины обкладки. Из ситуации можно выйти, если ввести понятие поверхностной плотности заряда (σ): σ = Q / S. Площадь обкладки разбивают на множество малых площадок s, заряд Q распределяют в виде элементарных зарядов q по площадкам s. Тогда для любого зазора d можно выбрать такую малую площадку, что заряд на ней будет точечным. Если каждый точечный заряд на положительной обкладке соединить условной линией с точечным зарядом на отрицательной обкладке напротив, получится множество линий, вдоль которых направлены кулоновские силы. Очевидно, это будут одинаковые параллельные отрезки на равных расстояниях между ними. Это означает, что электрическое поле внутри конденсатора всюду имеет одинаковую величину и направление. Такое поле называют однородным. Сила однородного поля одинакова по величине и направлению в любой точке между обкладками.
Представим, что элементарный заряд q переместился от одной обкладки к другой. При этом электрическое поле конденсатора произвело механическую работу A = Fd, где F – кулоновская сила. Согласно (26.4), электрическая энергия заряда изменилась на величину Uq, где U – напряжение между обкладками. Значит, можно написать: Fd = Uq (33.3). Перепишем (33.3) в виде: F/q = U/d (33.4). Величину F/q, равную KQ/r2
, принято называть напряженностью электрического поля или просто полем Е: E = U/d (33.5). Это уравнение выражает поле внутри конденсатора через разность потенциалов на обкладках. Поля других тел, например, провода или пластины, можно вычислить при помощи теоремы Гаусса.§ 34. Теорема Гаусса
Следует заметить, что теорему Гаусса, которая связывает величину заряда Q с электрическим полем Е вокруг этого заряда, в отечественной литературе принято называть теоремой Остроградского – Гаусса. Считается, что русский учёный Остроградский доказал эту теорему независимо от Гаусса. Не вдаваясь в споры о приоритете, покажем, что теорема Остроградского-Гаусса элементарно выводится из закона Кулона. Напомним, что закон Кулона имеет вид: F = Qq/4πε0
r2 (34.1), где Q – заряд тела, q – малый (пробный) заряд, r – расстояние от тела до малого заряда, ε0 – электрическая постоянная. Полем E мы по прежнему называем отношение силы F к малому заряду q: E = F/q.Перепишем (34.1) в виде: E = Q/(4π ε0
r2) или: E*4π r2 = Q/ε0 (34.2). Слева в (34.2) стоит поле E, умноженное на площадь поверхности сферы радиуса r: 4π r2 = S0. Произведение любого поля на площадь поверхности, через которую это поле проходит, Фарадей назвал потоком поля Ф. Тогда можно написать: Ф = Q/ε0 (34.3). Уравнение (34.3) называют теоремой Остроградского – Гаусса. Согласно этой теореме, поток Ф электрического поля Е через замкнутую поверхность равен зарядуQ внутри нее, деленному на ε0. Значение универсальной постоянной ε0 равно 0,885х10-11 ф/м.Задача. Вычислить напряженность электрического поля Е для провода диаметром 2 r вблизи его поверхности.
Решение. Опытами доказано, что свободные электроны размещаются главным образом на поверхности заряженного тела, потому что их вытесняют поля связанных электронов. Выберем участок провода длиной l с площадью поверхности s = 2π r l. Теорема Гаусса для провода имеет вид: Ф = E s = E 2π r l = Q/ε0
, откуда E = Q/(2π r l ε0). Введем понятие линейной плотности заряда провода: λ = Q/l, тогда для провода: E = λ/(2π r ε0) (343.4). Это есть ответ.§ 35. Поле конденсатора
Вернемся к вопросу об ослаблении электрического поля диэлектриком. Поместим наш конденсатор в аквариум, зарядим его и отключим от генератора. Затем в аквариум нальем диэлектрик – дистиллированную воду. Если сейчас измерить напряжение U1
на обкладках конденсатора, мы увидим, что оно уменьшилось почти в 90 раз! Из (8.5) следует, что для сухого конденсатора U = E d (35.1). Тогда для конденсатора с диэлектриком можно написать U1 = U/ε, или E1 = E/ε (35.2), где ε – коэффициент ослабления поля. Величину ε принято называть диэлектрической проницаемостью, хотя она характеризует не проницаемость, а ослабление поля диэлектриком. (Справедливости ради заметим, что вместо понятия сопротивления в теории электричества часто используют понятие проводимости, которое имеет противоположный смысл). Для каждого диэлектрика ε имеет своё значение. Для ряда веществ значения ε измерены и сведены в таблицу.