Мы уже говорили, что любое массивное тело является источником гравитации. Очевидно, чем больше масса тела, тем сильнее поле тяготения вокруг него. Интересно узнать, от чего ещё зависит сила притяжения? Известно, что на Луне вес тела всего в шесть раз меньше, чем на Земле, хотя масса Луны в 81 раз меньше земной. Значит, сила притяжения зависит не только от массы. Заметим, что морские приливы на Земле от притяжения Солнца намного меньше, чем от Луны, хотя Солнце неизмеримо массивнее. Разница в том, что расстояние от Земли до Солнца намного больше, чем до Луны. Очевидно, сила притяжения зависит также от расстояния до источника гравитации. Изучение высоты прилива в зависимости от расстояния до источника гравитации показывает, что сила тяготения зависит от расстояния в квадрате до центра гравитации. Докажем это.
Разделим радиус Земли на радиус Луны и возведем в квадрат: 6 380 км / 1 740 км = 3.66; 3.66*3.66 = 13.4. Мы получили отношение квадратов расстояний до центров гравитации. Отношение масс Земли и Луны известно, оно равно 81. Разделим отношение масс на отношение квадратов радиусов: 81/13.4 = 6, что в точности равно отношению веса тела на Земле к весу того же тела на Луне. Это значит, что гравитация на Луне в шесть раз меньше гравитации на Земле, что и требовалось доказать. Следовательно, поле гравитации вокруг тела пропорционально массе тела и обратно пропорционально квадрату расстояния до центра тела: g = GM/R2
(6.1). Коэффициент G нужен, чтобы совпали размерности по обе стороны знака равенства. Из требований системы СИ следует, что размерность G равна: [G] = [L3/MT2]. Коэффициент G называется «постоянная гравитации». От её значения зависит время жизни звёзд, галактик, в общем, зависит всё. В нашей Вселенной величина постоянной гравитации равна: 6.67*10-11 м3/кг*с2.Чтобы узнать, с какой силой притягивает к себе тело с массой М, умножим обе части (6.1) на массу m (масса второго тела), получим: mg = GMm/R2
(6.2). Слева получился вес второго тела Р, который равен силе притяжения: F = GMm/R2 (6.3).Уравнение (6.3) известно как закон всемирного тяготения. Его тоже открыл Ньютон. С помощью уравнения (6.3) можно вычислить силу притяжения между любыми телами, если известны их массы и расстояние между их центрами. Покажем на учебном примере (задаче).
§ 7. Невесомость
Нередко можно услышать фразу, что космонавты на орбите испытывают невесомость, потому что центробежная сила уравновешивает силу притяжения Земли. Согласиться с этим невозможно. Мы уже говорили, что взаимодействовать могут только тела. Сила – не материальное тело. Сила это математический объект, формула, которая существует только на бумаге. Компенсировать притяжение можно, только разместив «над» спутником другой центр притяжения, т. е. другую планету. В нашем случае, избавиться от притяжения Земли можно только полностью подчинившись ему, т. е. начать падать с высоты по направлению к центру Земли. Тот, кто падает, ничего не весит. Покажем на опыте, как возникает невесомость на орбите.