В этом и есть суть проблемы. Как увидим в следующей главе, именно вокруг этих величин и крутятся экспериментальные оценки количества NO в D-области, колеблясь от 106 до 109 см-3. Ясно, что наша проблема источника ионизации очень зависит от этих цифр. Если [NO]106 см-3 и меньше, как давали первые теории и эксперименты, ионизация окиси азота является слабым процессом и проблема источника ионизации на высотах 65 - 85 км встает во весь рост.
Именно эта ситуация подтолкнула ученых в середине шестидесятых годов к поискам новых путей поддержания ионизации в средней части D-области. Поскольку казалось, что все возможности электромагнитного излучения Солнца уже исчерпаны, обратились к потокам корпускул. Могут ли потоки энергичных заряженных частиц проникать в область D и вызывать там ионизацию? Выяснилось, что могут. И наиболее вероятный кандидат для этого - электроны с энергиями в десятки килоэлектронвольт. Такие электроны должны свободно проходить через более высокие слои атмосферы и тратить свою энергию (в основном на ионизацию) как раз на высотах 60 - 80 км. Дело лишь в том, существуют ли достаточные потоки таких электронов в атмосфере.
Некоторое время вопрос этот оставался открытым к соответственно оставалась нерешенной проблема ионизации области D. Затем провели измерения на ракетах (а это, конечно, далеко не просто) и получили, что потоки электронов с энергиями в десятки килоэлектронвольт существуют, но... их интенсивность в спокойных условиях на средних широтах недостаточна для поддержания ионосферы. На высоте 80 км, например, они способны обеспечить скорость ионизации около 0,1 акта см-3xс-1, а нужно, как мы знаем, 1 - 10 актов см-3xс-1.
Значит, в чистом виде идея не прошла. Но она, как и многие идеи такого рода, не была бесплодной. Потоки электронов указанных энергий признаны основным источником ночной ионизации в области D, когда отсутствует солнечное излучение. Эти потоки важны и для объяснения ионизации на высотах 60 - 80 км в возмущенных условиях, т. е. в полярной ионосфере и во время геомагнитных бурь в средних широтах. В этих случаях потоки электронов, тесно связанные с магнитным полем Земли, могут возрастать в десятки и сотни раз, что, видимо, и объясняет возрастание ионизации в D-области во время таких возмущений.
Американские ученые Хантен и Мак Элрой предложили еще один механизм ионизации в области 65 - 85 км, о котором ранее не думали. Мы знаем, что излучение с >1000 A не в состоянии ионизовать обычную молекулу азота или кислорода - не хватает энергии кванта. Ну а если молекула необычная? Если она находится в возбужденном состоянии, т. е. сама несет некий запас энергии? Оказывается, в этом случае энергия кванта, способного ионизовать такую молекулу, может быть меньше, так как дефицит покрывается за счет внутренней энергии возбужденной молекулы.
Именно на этом простом принципе построена идея Хантена и МакЭлроя. В солнечном спектре есть интервал длин волн 1027 - 1118 A, излучение которых относительно легко проникает на высоты области D. Само по себе это излучение не может ионизовать ни О2 ни N2 - не хватает энергии. Но от энергии кванта этого излучения (в среднем 11,5 эВ) до порога ионизации молекулы кислорода (около 12 эВ) относительно недалеко. Разница составляет менее 1 эВ. Чтобы ее компенсировать, нужна молекула О2, сама запасшая примерно такую энергию. Для этой роли вполне подходит молекулярный кислород, возбужденный в состояние 1g. He вдаваясь сейчас в детали, отметим, что энергия возбуждения для состояния 1g, т. е. энергия, которую запасает молекула кислорода, находясь в этом состоянии, чуть меньше 1 эВ. Вполне достаточно, чтобы покрыть дефицит и "поддаться" ионизации излучением 1027-1118 A.
Роль описанного механизма в образовании области D зависит, естественно, от количества окиси азота. Мало NO - слаб механизм N0 плюс L, значит, ионизация О2 (1g) выходит на первое место. Много окиси азота - ионизация О2 (1g) играет более скромную роль.
По современным представлениям, окиси азота все-таки "много"- как раз те 107 - 108 молекул на кубический сантиметр, которые необходимы, чтобы объяснить ионизацию D-области механизмом N0 плюс L.
Однако, какова бы ни была роль ионизации молекул О2(1g) в общем ионизационном бюджете на высотах 65 - 85 км, этот механизм является в дневное время основным поставщиком ионов О2+, тогда как ионизация в линии L способна порождать лишь ионы N0+. Как мы увидим ниже, вопрос о том, какие именно ионы рождаются в первичном акте ионизации, может быть очень важен для понимания всего дальнейшего цикла ионных превращений.