Итак, все очень хорошо сходится. И уменьшение g/[e]2 во время вспышек, и линейная связь между g и [е] в верхней части области D объясняются наблюдаемым экспериментaльно изменением ионного состава - уменьшением количества быстро рекомбинирующих ионов-связок при увеличении g и [е]. Это очень важный вывод. Он позволяет теперь всю совокупность данных о g, [e] и ионном составе рассматривать под единым углом зрения, соединить их в одну проблему. Решение проблемы упирается, очевидно, в вопрос о том, почему соотношение между обычными ионами и ионами-связками меняется так, а не иначе. А это в свою очередь связано с поиском путей образования ионов-связок из О2+ и NO+, о чем мы уже рассказывали в этой главе. Таким образом, изучение фотохимических реакций образования ионов-связок становится ключевым моментом для всей проблемы цикла ионизационно-рекомбинационных процессов в верхней части D-области.
Ну а может ли ' на высоте 80 км быть больше 10-5 см3xс-1? Оказывается, может. Но только если в игру вступят отрицательные ионы. Они, как мы говорили, могут играть некоторую роль на этой высоте в сумерках и ночью. Если >1, то, согласно уравнению (40), эффективный коэффициент рекомбинации будет в (1+) раз больше, чем величина *. Таким образом, в некоторых случаях не без помощи отрицательных ионов величина а! на высоте 80 км может достигать 10-4 см3xс-1.
Внимательному читателю уже, вероятно, ясно, как должен решаться вопрос о причинах изменения эффективного коэффициента рекомбинации ' в нижней части D-области. Изменением состава положительных ионов тут делу не поможешь. Практически при всех условиях доминируют ионы-связки, поэтому * в выражении (40) можно считать почти постоянным и равным *св. Но зато появляется другой фактор, который может изменяться, - . Вот его то и обвиняют в наблюдаемой изменчивости ' на высоте 70 км. Конкретно это означает, что во время солнечной вспышки на высоте 70 км величина должна (чтобы объяснить уменьшение ') падать примерно в 5 раз.
Следующий естественный вопрос: что же вызывает падение величины Я? Но для ответа на него необходимо построить полную схему преобразования отрицательных ионов. А это, как мы знаем из предыдущего параграфа, дело, увы, пока далекое от завершения...
6. Проблемы нейтральных частиц
Все, о чем шла речь в главах 3 - 5, касалось судьбы заряженных частиц - путей их образования, гибели и взаимной трансформации. Но ведь верхняя атмосфера полна нейтральных частиц. И с ними тоже происходят многочисленные превращения - они образуются и гибнут в фотохимических реакциях, переносятся из одних областей в другие динамическими процессами, возбуждаются и т. д.
И конечно, при этом возникают проблемы, которые по важности и драматизму не уступают самым острым проблемам чисто ионосферной физики.
К сожалению, однако, рассказать о всех этих проблемах в рамках небольшой книги практически невозможно. Переходя к аэрономии нейтральных частиц, мы немедленно сталкиваемся с разнообразием и просто слишком большим количеством различных реакций. Например, в области высот 50 - 100 км при рассмотрении всего цикла процессов в кислородно-азотна-водородной смеси используют обычно систему из более чем 50 фотохимических реакций.
Естественно, описать такую систему сколь-нибудь подробно здесь невозможно. А без описания трудно объяснить и суть ряда проблем. Мы ограничимся поэтому рассказом о трех самых интересных и важных на наш взгляд проблемах, связанных с нейтральными частицами. Две из них (окись азота и атомный азот), как мы увидим ниже, тесно связаны между собой и создают одну большую проблему - пожалуй, наиболее острую и злободневную в современной аэрономии.
Что касается проблемы возбужденных частиц в верхней атмосфере, то это в значительной мере все еще "terra incognita". В течение последних пяти лет лишь начали понимать, какие возможности таит в себе физикохимия возбужденных частиц для решения ряда насущных вопросов физики верхней атмосферы и особенно ионосферной физики. И конечно, за этим направлением аэрономии большое будущее.
Что же касается ряда вопросов аэрономии нейтральных частиц, не нашедших здесь отражения (диссоциация кислорода, химия водородных соединений, образование "горячих" атомов гелия и др.), автор отсылает читателей к своей книге "Химия, атмосфера и космос" или к более поздним и более серьезным публикациям, список которых приведен в конце этой книги.
Эта неприятная окись азота
Если, как мы говорили, из всех ионосферных областей больше всего хлопот и экспериментаторам, и теоретикам доставила область D, то среди нейтральных частиц первенство по "вредности", несомненно, держит окись азота.
Трудности, возникающие при изучении окиси азота в верхней атмосфере, очень похожи на трудности в постижении природы и поведения области D. Точно так же экспериментальный подход упирается в технические проблемы, а взгляды на теорию претерпевают в течение последних 10 - 15 лет непрерывные изменения, поэтому не удается построить надежных теоретических моделей.