Для того чтобы произошел процесс (3), надо затратить некоторую энергию. Наименьшая энергия, при которой данная частица X может быть ионизирована, называется потенциалом ионизации данной частицы. Мы будем обозначать потенциал ионизации буквой V и выражать в электронвольтах. Очевидно, что не всякое излучение может вызывать ионизацию. Оторвать электрон от частицы X можно, лишь воздействуя на нее излучением, квант которого hv несет энергию, не меньшую, чем Vх (X показывает, что имеется в виду потенциал ионизации именно частицы X). Длина волны λ (или частота ν), для которой справедливо равенство hν=Vx, называется порогом ионизации частицы X.
Если бы в атмосфере действовал только процесс (3), заряженные частицы накапливались бы непрерывно и концентрация ионов и электронов (будем обозначать ее [Х+] и [е]) бесконечно возрастала бы. Но реально этого, конечно, не наблюдается. Как только образовалось некоторое заметное количество Х+ и е, начинается обратный (по отношению к ионизации (3)) процесс - соединение положительного иона с электроном, приводящее к восстановлению нейтральной частицы, "погибшей" в результате реакции (3):
Такой процесс называется рекомбинацией.
На тех высотах, где динамические процессы отсутствуют или их влияние мало, два противоборствующих процесса - ионизация (3) и рекомбинация (4) - определяют количество заряженных частиц, т. е. строение ионосферы. Так обстоит дело в принципе.
На самом деле за каждой из реакций (3) и (4) стоит целый набор различных реакций ионизации и рекомбинации с образованием и исчезновением разных ионов. Кроме того, между реакциями (3) и (4) появляется еще промежуточный процесс - ионно-молекулярные реакции, в которых заряженные частицы не рождаются и не гибнут, а лишь преобразуются друг в друга. Весь этот набор реакций с участием различных ионов и составляет основу фотохимии ионосферы. История же ионосферной физики за последние 15 - 20 лет есть в основном история построения и изучения этого комплекса процессов.
Как от простой схемы двух процессов типа (3) и (4), так называемого слоя Чепмена, перешли к более сложным схемам, в каком столкновении мнений, борьбе идей рождалось представление о всей совокупности реакций ионизации и рекомбинации (так называемом ионизационно-рекомбинационном цикле процессов) - обо всем этом можно прочесть в книге автора "Химия, атмосфера и космос". Здесь мы постараемся рассказать, как выглядит современная схема ионосферной фотохимии и какие особенности поведения ионосферы эта схема может объяснить.
Свое рассмотрение мы начнем с самой простой области ионосферы, расположенной на высотах 100 - 200 км. Эта область считается простой по нескольким причинам. Во-первых, выше 100 км заведомо нет отрицательных ионов, а они, как мы увидим в главе 5, крайне усложняют ионизационно-рекомбинационный цикл. Во-вторых, один из важнейших динамических процессов - амбиполярная диффузия - начинает серьезно вмешиваться в дела ионов и электронов лишь выше 200 км, а в интересующей нас сейчас области она нам никаких неприятностей причинить не может. Третье преимущество указанной области - доступность ее для небольших геофизических и метеорологических ракет. А такие ракеты поставляют весьма ценные экспериментальные данные. В итоге нам есть с чем сравнивать выводы теории. Мы можем эту теорию контролировать и уточнять по надежным данным наблюдений.
В результате всех этих причин область высот 100 - 200 км (будучи сама по себе значительной и важной частью ионосферы стала чем-то вроде полигона для проверки и отработки фотохимической теории образования ионизации в атмосфере. Построенная для высот 100 - 200 км фотохимия применяется затем и к большим высотам (скажем, область максимума слоя F2), где приходится "мирить" ее с динамическими процессами, и к области D, где на нее накладывается специфика отрицательных ионов и ионов-связок.
Главный источник - Солнце
Основной вопрос ионосферной физики - что является первопричиной образования пояса заряженных частиц в верхней атмосфере Земли - уже давно получил ответ. Первопричина появления ионосферы - ионизующее излучение Солнца.
Что значит "ионизующее"? Очевидно, способное вызвать процесс ионизации. Чуть выше мы говорили, что для того чтобы произошел процесс ионизации (3), квант излучения должен иметь энергию не меньше потенциала ионизации частицы X. В роли X в верхней атмосфере могут выступать основные нейтральные компоненты - N2, O2, О. Наименьший потенциал ионизации из них имеет молекулярный кислород - около 12 эВ. Эта энергия соответствует длине волны 1020 Å. Значит, ионизующим излучением в данном случае будет любое ультрафиолетовое и рентгеновское излучение с λ<1020Å. Это верхняя граница.