Читаем Популярная аэрономия полностью

В нашей схеме будут фигурировать наряду с электронами два типа отрицательных ионов: "ионы кольца" и "стабильные ионы". Эти названия были введены несколько лет назад автором по следующим причинам. Ионы первой группы очень быстро переходят друг в друга по ионно-молекулярным реакциям (например, О2- - в О3-; и в О4; О3- - в СО3-; СО- - снова в О2- и т. д.). При этом все время идут быстрые реакции прилипания и отлипания, поэтому электроны как бы движутся по кругу: от свободного состояния к иону О2-, затем О3-, затем к СОГ, затем снова к О2- и вновь к свободному состоянию. При этом указанные реакции столь эффективны, что именно они определяют время жизни (а следовательно, и концентрации) ионов кольца, а, скажем, процессы взаимной нейтрализации на их концентрации не влияют. Как показывают оценки, концентрации таких ионов, по крайней мере в дневной области D, малы - не они выступают в роли основных отрицательных ионов, однако их роль как промежуточного этапа всего ионизационно-рекомбинационного цикла процессов очень велика.

Стабильные ионы названы так потому, что для них, видимо, нет столь быстрых процессов перехода друг в друга или отделения электрона (отлипания). Основным процессом гибели для них является взаимная нейтрализация с положительными ионами. Стабильные ионы должны составлять подавляющее большинство отрицательных ионов в D-области. Наиболее вероятные кандидаты в стабильные ионы - NO2-, NO3- и отрицательные ионы-связки, о которых пока известно мало.

В нашу схему включены четыре принципиальных процесса. О прилипании мы уже говорили. Оно идет в основном по реакции (32). На всякое прилипание должно существовать отлипание. Есть оно и в нашей схеме. Его обеспечивают два очень важных процесса отлипания от ионов О2- в реакциях с атомным кислородом и возбужденными молекулами кислорода.

Здесь уместно сделать маленькое отступление. Что значит "отлипание"? Это значит отрыв электрона от нейтральной частицы. Но электрон в отрицательном ионе не просто приложен к нейтральной частице, он с ней связан некоторой энергией. Эта энергия связи называется электронным сродством S данной нейтральной частицы и выражается обычно в электронвольтах. Следовательно, чтобы произошло отлипание, нужно затратить энергию, равную S. Но где ее взять? Если отлипание происходит под действием излучения (фотоотлипание), необходимую энергию обеспечивает квант излучения. В случае включенной в схему реакции

Формула 34

для отрыва электрона используется энергия возбужденной молекулы О2* (в правой части реакции возбужденных частиц нет - энергия ушла на разрушение О2-).

Ну а в реакции С2- с О? У атома О ведь нет дополнительной энергии. Оказывается, в этой реакции

Формула 35

отрыв электрона происходит за счет энергии диссоциации молекулы О3.

Действительно, ведь, чтобы разрушить молекулу озона на О2 и О, надо затратить энергию. А при создании (ассоциации) О3 эта энергия должна выделиться. Вот она-то и расходуется на отлипание электрона, а вся реакция носит поэтому название ассоциативного отлипания.

Итак, "вернемся к нашим баранам". Следующий тип процессов в рассматриваемой схеме - ионно-молекулярные реакции. Они аналогичны ионно-молекулярным реакциям положительных ионов, хорошо нам теперь известным, и играют в схеме ионных преобразований примерно такую же роль, т. е. в конечном итоге переводят первичные ионы ОГ во вторичные, более стабильные ионы (NО2-, NО3- и т. д.), которые участвуют в процессах рекомбинации и образования ионов-связок. И наконец, последний тип процессов - взаимная рекомбинация положительных и отрицательных ионов. Наибольшие трудности связаны с поиском ионно-молекулярных реакций, эффективно переводящих ионы кольца в стабильные ионы. В качестве решения проблемы предложены две похожие реакции:

Формула 36

Формула 37

Их главное достоинство состоит в том, что в них участвует молекулярный азот - основная нейтральная компонента на высотах области D. Их главный недостаток в том, что этих реакций никто никогда не регистрировал в лаборатории. Но достоинство в данном случае оказывается сильнее. Молекулярного азота так много, что для нашей схемы достаточно, чтобы реакции (36) и (37) шли с очень низкими константами скорости (≈10-14-10-15 см3×с-1). А реакции отрицательных ионов с такими низкими константами в лаборатории пока измерять не могут - это ниже чувствительности обычных лабораторных методов. Так что приходится принять реакции (36) и (37) "на веру", исходя из логики самой схемы. Верно ли наше предположение, должно ответить будущее.

Таково на сегодня положение дел с фотохимической теорией отрицательных ионов. Много неясностей, есть элемент произвола, есть белые пятна (например, реакции образования ионов-связок). Возникает естественный вопрос: ну а есть ли основания все же об этой схеме говорить? Есть ли хоть какие-нибудь экспериментальные подтверждения ее разумности?

Перейти на страницу:

Похожие книги

Биология добра и зла. Как наука объясняет наши поступки
Биология добра и зла. Как наука объясняет наши поступки

Как говорит знаменитый приматолог и нейробиолог Роберт Сапольски, если вы хотите понять поведение человека и природу хорошего или плохого поступка, вам придется разобраться буквально во всем – и в том, что происходило за секунду до него, и в том, что было миллионы лет назад. В книге автор поэтапно – можно сказать, в хронологическом разрезе – и очень подробно рассматривает огромное количество факторов, влияющих на наше поведение. Как работает наш мозг? За что отвечает миндалина, а за что нам стоит благодарить лобную кору? Что «ненавидит» островок? Почему у лондонских таксистов увеличен гиппокамп? Как связаны длины указательного и безымянного пальцев и количество внутриутробного тестостерона? Чем с точки зрения нейробиологии подростки отличаются от детей и взрослых? Бывают ли «чистые» альтруисты? В чем разница между прощением и примирением? Существует ли свобода воли? Как сложные социальные связи влияют на наше поведение и принятие решений? И это лишь малая часть вопросов, рассматриваемых в масштабной работе известного ученого.

Роберт Сапольски

Научная литература / Биология / Образование и наука
Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература
Доказательная медицина. Что, когда и зачем принимать
Доказательная медицина. Что, когда и зачем принимать

Доказательная медицина – термин широко известный, даже очень. А все широко известное, уйдя в народ, наполняется новым, подчас неожиданным, смыслом. Одни уверены, что доказательная медицина – это юридический термин. Другие считают доказательной всю официальную медицину в целом, что не совсем верно. Третьи знают из надежных источников, что никакой доказательной медицины на деле не существует, это выдумка фармацевтических корпораций, помогающая им продвигать свою продукцию. Вариантов много… На самом деле доказательная медицина – это не отрасль и не выдумка, а подход или, если хотите, принцип. Согласно этому принципу, все, что используется в профилактических, лечебных и диагностических целях, должно быть эффективным и безопасным, причем оба этих качества нужно подтвердить при помощи достоверных доказательств. Доказательная медицина – это медицина, основанная на доказательствах. Эта книга поможет разобраться как с понятием доказательной медицины, так и с тем, какие методы исследования помогают доказать эффективность препарата или способа лечения. Ведь и в традиционной, официальной, полностью научной медицине есть куча проблем с подтверждением эффективности и безопасности. Правильное клиническое исследование должно быть прозрачным и полностью объективным. На этих двух столпах стоит доказательная медицина. А эти столпы опираются на фундамент под названием «эксперимент».

Кирилл Галанкин

Научная литература / Научно-популярная литература / Образование и наука