Значит, N и N0 оказываются тесно связанными. Мы рассматриваем здесь только процессы с участием нейтральных частиц. А когда к делу подключатся еще и заряженные частицы, связь между окисью азота и атомным азотом становится еще более тесной и сложной. Мораль проста: невозможно всерьез обсуждать отдельно фотохимию N и N0, приходится говорить о всем цикле процессов с участием азота и его окислов. В этом-то и состоит основная трудность проблемы N0. Решение этой проблемы исторически идет по пути своего рода соревнования между измерениями количества окиси азота и усовершенствованием теории указанного цикла процессов.
Первыми рассмотрели схему реакций с участием N и N0 классики аэрономии англичанин Бейтс и бельгиец Николе. Они получили, что в области D концентрации окиси азота относительно малы и не превосходят 106 молекул на кубический сантиметр. Такой вывод был очень важен, поскольку он показывал, что N0 не может играть существенной роли в образовании области D, Это привело к проблеме дополнительного источника ионизации, описанной в предыдущей главе. Но был ли такой вывод правильным?
Поначалу казалось, что это так. Первое экспериментальное определение количества N0, сделанное японскими учеными, подтвердило выводы теории: количество окиси азота ниже 85 км не превышает 106 см-3.
Здесь следует сделать небольшое отступление - сказать о трудностях измерения N0 в верхней атмосфере. Мы знаем, что основной метод исследования состава атмосферы - масс-спектрометрический. Но окись азота, как бы много внимания ей ни уделяли ученые, является
Каждая частица (атом или молекула) имеет свой особый спектр поглощения (или излучения), свой "оптический паспорт". Нужно только найти характерные черты этого спектра и произвести измерения в соответствующем интервале длин волн. Эти черты были найдены в виде так называемых γ-полос N0 в ближней ультрафиолетовой части спектра (1800 - 2100 Å). Если аккуратно измерить поглощение атмосферы на различных высотах в указанном интервале длин волн (скажем, с помощью фотометра, поднятого на ракете), то его можно пересчитать в концентрации N0, поскольку именно окись азота служит основным поглощающим агентом в этом интервале λ. Такова идея оптического метода. Но, как обычно, между идеей и ее воплощением стоят серьезные трудности. Они связаны в основном с двумя факторами - калибровкой фотометра и учетом фона рассеянного света, т. е. паразитного сигнала, вызванного излучением, попавшим в прибор помимо поглощающего слоя N0.
Эти экспериментальные трудности и приводят к тому, что к каждому конкретному измерению концентрации N0 приходится относиться с определенной осторожностью. До самого недавнего времени считалось также, что именно с этим связаны в большинстве случаев различия в результатах измерений. Мы вернемся к этому в дальнейшем.
В 1959 году группа японских исследователей опубликовала первые экспериментальные оценки количества N0 в верхней атмосфере. Они использовали весь интервал спектра 1800 - 2100 Å и измеряли суммарную концентрацию окиси азота в столбе атмосферы высотой около 25 км. Эти оценки совпали с теоретическими оценками того времени.
Благополучие это, однако, длилось лет пять. В 1964 году американский ученый Барт опубликовал результаты более тщательных измерений концентраций NO тем же методом. Однако он использовал поглощение в отдельных, более узких полосах и уделил большее внимание вопросу фона рассеянного излучения. Измерения Барта поколебали казавшееся прочным здание фотохимической теории. Согласно его измерениям, количество NO на высотах 75 - 100 км составляет 4×107 см-3, что в 40 раз выше верхнего предела, данного в японской работе. Ситуация резко изменилась. Во-первых, обнаружилось существенное различие между теорией и экспериментом. Во-вторых, стало ясно, что окись азота может играть роль в поддержании ионизации в области D. Как развивалась вторая сторона проблемы, мы уже видели в предыдущей главе. Ну а конфликт между теорией и экспериментом?