Читаем Популярная библиотека химических элементов. Книга первая. Водород — палладий полностью

Разочаровавшись в медицинской практике, Волластон навсегда оставил медицину и с 1800 г. целиком посвятил себя изучению платины. На жизнь, на приобретение материалов и оборудования для лаборатории нужны были деньги. Человек высокоодаренный и предприимчивый, Волластон разработал способ изготовления платиновой посуды и аппаратуры: реторт для сгущения серной кислоты, сосудов для разделения серебра и золота, эталонов мер и т. д. Более того, он, говоря нынешним языком, быстро внедрил этот способ в практику. А как раз в эти годы платиновая посуда стала для химических лабораторий необходимостью. Об этом, правда, несколько позже, хорошо скажет в своих «химических письмах» выдающийся немецкий химик Юстус Либих: «Без платины было бы невозможно во многих случаях сделать анализ минералов… Состав большинства минералов был бы неизвестным». И дело не только в минералах: первая четверть XIX в. — время больших перемен в химии.

Освободившись от оков теории флогистона, химия двигалась вперед семимильными шагами. Не случайно на рубеже XVIII и XIX вв. (±10 лет) открыто около 20 новых химических элементов.

Дело Волластона процветало; изделия, вышедшие из его мастерской, пользовались большим спросом во многих странах, были вне конкуренции и приносили Волластону-предпринимателю немалые доходы. Однако успехи в коммерции не вскружили ему голову. В числе немногих ученых того времени Волластон понимал и последовательно проводил в жизнь идею взаимоплодотворной связи науки и практики.

Работая над дальнейшим совершенствованием методики аффинажа и обработки платины, он пришел к мысли о возможности существования платиноподобных металлов. Продажная платина, с которой работал Волластон, была загрязнена золотом и ртутью. Стремясь получить более чистый металл, Волластон избавлялся от этих, да и от других примесей. Сырую платину он растворял в царской водке, после осаждал из раствора только платину — особо чистым нашатырем NH4Cl. Тогда он и заметил, что раствор, оставшийся после осаждения платины, был розовым. Известными примесями (ртуть, золото) эту окраску нельзя было объяснить.

Волластон подействовал на окрашенный раствор цинком: выпал черный осадок. Высушив его, Волластон попытался растворить его в царской водке. Часть порошка растворилась, а часть осталась нерастворенной. О дальнейших своих исследованиях Волластон писал: «После разбавления этого раствора водой, чтобы избежать осаждения незначительных количеств платины, оставшейся в растворе, я добавил в него цианид калия — образовался обильный осадок оранжевого цвета, который при нагревании приобрел серый цвет… Затем этот осадок сплавился в капельку по удельному весу меньше ртути… Часть этого металла растворялась в азотной кислоте и имела все свойства пущенного в продажу палладия». Из другой — нерастворимой части был выделен еще один платиноид — родий.

Почему первый из открытых спутников платины Волластон назвал палладием, а второй — родием? Rhodium — от греческого — «розовый»; соли родия придают раствору розовый цвет. Второе название с химией не связано. Оно свидетельствует об интересе Волластона к другим наукам, в частности к астрономии. Незадолго до открытия палладия и родия (в 1802 г.) немецкий астроном Ольберс обнаружил в солнечной системе новый астероид и в честь древнегреческой богини мудрости Афины Паллады так и назвал его Палладой. А Волластон один из «своих» элементов назвал в честь этого астероида, точнее, в честь этого астрономического открытия.

<p>Об источниках палладия — реальных, перспективных и бесперспективных</p>

Волластону пришлось извлекать палладий из сырой платины, попутно добытой при промывке золотоносных песков в далекой Колумбии. В то время зерна самородной платины были единственным известным людям минералом, содержавшим палладий. Сейчас известно около 30 минералов, в которых есть этот элемент.

Как и все металлы платиновой группы, палладий довольно мало распространен. Хотя с чем сравнивать! Подсчитано, что в земной коре его 1•10-6%, т. е. примерно вдвое больше, чем золота. Наиболее известные россыпные месторождения платиновых металлов, а следовательно и палладия, находятся в нашей стране (Урал), в Колумбии, на. Аляске и в Австралии. Небольшие примеси палладия часто находят в золотоносных песках.

Но главным поставщиком этого металла стали месторождения сульфидных руд никеля и меди. И, естественно, перерабатывая такие руды, в качестве побочного продукта извлекают драгоценный палладий. Обширные залежи таких руд найдены в Трансваале (Африка) и Канаде.

Разведанные в последние десятилетия месторождения медно-никелевых руд Заполярья (Норильск, Талнах) открыли возможности для дальнейшего увеличения добычи платиновых металлов и в первую очередь палладия. Ведь содержание его в таких рудах втрое больше, чем самой платины, не говоря уже об остальных ее спутниках.

Перейти на страницу:

Похожие книги

Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей
Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей

«Сумма биотехнологии» Александра Панчина — это увлекательный научно-популярный рассказ о генетически модифицированных организмах (ГМО), их безопасности и методах создания, а также о других биотехнологиях, которые оказались в центре общественных дискуссий. Из книги вы узнаете все самое интересное о чтении молекул ДНК, возможности клонирования человека, создании химер, искусственном оплодотворении и генетической диагностике, о современных методах лечения наследственных заболеваний с помощью генной терапии, о перспективах продления человеческой жизни и победы над старением. В то же время в книге подробно разобраны популярные в обществе мифы, связанные с внедрением биотехнологий в практику, и причины возникновения ложных опасений.

Александр Панчин , Александр Юрьевич Панчин

Научная литература / Химия / Биология / Прочая научная литература / Образование и наука