Мы заметили, что искривление какого-либо геометрического объекта способно сделать его безграничным, но не бесконечным. Прямую линию можно условно назвать одномерным пространством, потому что она имеет только одно измерение, или, иначе говоря, задается только одной координатной осью – «х» или «у». Плоскость можно условно назвать двухмерным пространством, т. к. она имеет два измерения, задается двумя прямыми, или двумя координатными осями – «х» и «у». Привычное нам пространство, то, в котором мы находимся, является трехмерным, потому что оно задается тремя прямыми, или тремя координатными осями – «х», «у», «z». Вселенная представляет собой трехмерное пространство. Искривление одномерного пространства (прямой линии) делает его замкнутым (окружность) и безграничным (но не бесконечным). Искривление двухмерного пространства (плоскости) приводит к тому, что оно становится замкнутым (сфера) и не имеет границ (но остается конечным). Так же и искривление нашего трехмерного пространства, или Вселенной превращает его в замкнутое и безграничное (но не бесконечное). Здесь может возникнуть вопрос: что такое искривление трехмерного пространства? Как его себе представить? Мы можем представить искривление одномерного пространства (прямая линия превращается в окружность) или – двухмерного (плоская фигура становится сферой), но мы принципиально не можем представить себе искривление трехмерного пространства, потому что сами являемся трехмерными существами. Для пояснения приведем пример. Представим себе, что в некой плоскости живут двухмерные существа, которые передвигаются по ней во всех направлениях, но не могут покинуть ее, оторваться от нее (например, подняться над ней) в силу своей двухмерности. Теперь представим, что эта плоскость искривилась и замкнулась, превратившись в сферу. Двухмерные жители по-прежнему скользят по своей плоскости (теперь – сфере) во всех направлениях. Будут ли они замечать ее появившуюся кривизну? Не будут – для них она остается плоскостью. Если бы кто-то сказал им, что она искривлена, они не смогли бы себе это представить. Двигаясь по искривленной поверхности, они не воспринимают ее таковой. Кстати, это приводит к удивительным для них результатам. Отправляясь в своей плоскости строго вперед и двигаясь исключительно по прямой (как им кажется) линии, никуда не сворачивая, они, к своему величайшему изумлению, через какое-то время окажутся в той же точке, из которой начинали свой путь. Как двухмерные существа не в состоянии заметить, а также представить кривизну и замкнутость своей плоскости, так и мы – существа трехмерные – не можем заметить и представить кривизну своего трехмерного пространства и его замкнутость. Как то ни удивительно, но отправляясь по прямой линии в бескрайние глубины Вселенной, мы через некоторое время попадем туда же, откуда начинали свое путешествие. Этот необычный эффект обусловлен тем, что Вселенная представляет собой (с точки зрения современного естествознания) искривленное и замкнутое трехмерное пространство и является безграничной, но не бесконечной.
По поводу всего вышесказанного может возникнуть вопрос: каким образом в науке появился вывод об искривленности трехмерного пространства, если человек не в состоянии ни заметить, ни представить себе это. Такой вывод был сделан умозрительно. Там, где бессильны органы чувств и самое живое воображение, на помощь приходит умозрение: то, что нельзя увидеть глазами и наглядно представить, можно вывести умозрительным путем, т. е. усмотреть умом, помыслить. Например, почему мы запросто пользуемся понятием бесконечности, хотя ни увидеть ее, ни вообразить не можем? Потому что вполне способны уловить ее разумом, «увидеть» с помощью мысли.
Итак, одной из характерных черт современной научной картины мира является релятивизм. Другая такая черта – это математизация естествознания
, которая, начавшись еще в 16–17 вв., продолжается до настоящего времени и играет в нынешней науке гораздо большую роль, чем в эпоху Галилея и Ньютона. Современная исследовательская мысль начала проникновение в такие области природы, где использование математического языка становится единственно возможным. Например, объекты микромира (атомы и элементарные частицы) вообще не поддаются точному описанию и объяснению с помощью естественного языка и поэтому представляют собой в сегодняшнем естествознании, по преимуществу, набор сложных математических записей, понятных и доступных только специалистам в этой отрасли науки.