Новую модель атома построил известный датский физик Нильс Бор. По его представлениям электрон – это не столько точка или твердый шарик, движущийся вокруг атомного ядра, сколько некий сгусток энергии, как бы размазанный вокруг ядра, но не равномерно, а с большей или меньшей плотностью на различных участках. Кроме того, надо говорить не об орбите движения электрона, а его стационарном (неизменном) состоянии, в котором он может находиться, не излучая энергии. Если же это положение меняется, то есть электрон как бы переходит из одного стационарного состояния в другое, то он излучает или поглощает порцию энергии. Как видим, модель, предложенная Бором, была более сложной и менее понятной, чем резерфордовская, но и она не смогла с успехом объяснить атомное строение, потому что во многом использовала макроязык и макропонятия. Выяснилось, что процессы, происходящие в атоме, в принципе невозможно представить в виде какой-либо механической модели по аналогии с событиями в макромире. Даже понятия пространства и времени в существующей в макромире форме оказались неподходящими для описания микрофизических явлений. Отказавшись полностью от понятного естественного языка и наглядных моделей при изучении микромира, наука все более стала пользоваться абстрактным языком математики. Атом физиков-теоретиков постепенно превращался в ненаблюдаемый набор уравнений.
Мы уже говорили о том, что к концу 19 века наука установила два различных вида существования материи – вещество и поле, которые во всем друг от друга отличаются и представляют собой противоположности (вещество обладает корпускулярными свойствами, а поле – волновыми). На рубеже позапрошлого и прошлого столетий выяснилось, что два эти вида материи не исключают друг друга. Как то ни удивительно, но одни и те же объекты могут характеризоваться и свойствами вещества, и свойствами поля одновременно, то есть иметь как корпускулярные, так и волновые качества. Известный немецкий физик Макс Планк, исследуя процессы теплового излучения, пришел к ошеломляющему выводу о том, что при излучении энергия отдается или поглощается не непрерывно и не в любых количествах, но небольшими и неделимыми порциями, которые он назвал квантами
(лат. quantum – сколько). Квант – это порция энергии. Вдумаемся в это словосочетание. Его первая часть – слово «порция» – подразумевает нечто определенное, ограниченное, вещественное, имеющее некие размеры, то есть – частицу или корпускулу. Вторая часть – слово «энергия» – подразумевает нечто непрерывное, безразмерное, невещественное, то есть – поле. Стало быть, квант – это такой объект физической реальности, в котором совпадают или одновременно представлены и вещество, и поле, объект, отличающийся корпускулярно-волновым дуализмом.Эйнштейн перенес идею о квантах на область света и создал новое учение о нем. Вспомним, что Ньютон считал свет потоком корпускул, Гюйгенс и Юнг рассматривали его как волны светоносного эфира, а Фарадей и Максвел – как колебания электромагнитного поля. Эйнштейн совместил все эти представления и создал теорию, по которой свет имеет корпускулярно-волновую природу. Он распространяется квантами, то есть – энергетическими порциями, которые были названы фотонами
(греч. photos – свет). С одной стороны, фотон – это именно порция энергии и поэтому является своего рода частицей или корпускулой, а с другой стороны, фотон – это порция именно энергии и поэтому является своего рода волной. Свет по Эйнштейну – это поток энергетических зерен, световых квантов или своеобразный фотонный дождь. Эйнштейновское представление о световых квантах помогло понять и наглядно представить явление фотоэффекта, сущность которого заключается в выбивании электронов из вещества под действием световых волн (каждый электрон вырывается одним фотоном). Все это убедительно подтвердило идею Эйнштейна, что свет ведет себя не только как волна, но и как поток корпускул. В опытах по дифракции и интерференции проявляются его волновые свойства, а при фотоэффекте – корпускулярные. Фотонная теория Эйнштейна относится к наиболее экспериментально подтвержденным физическим теориям.