«щелочь та в течение нескольких минут поддерживалась в состоянии яркокрасного каления и полной подвижности. Ложечка находилась в соединении с сильно заряженной положительной стороной батареи из 100 пластин в 6 дюймов, соединение же с отрицательной стороной осуществлялось с помощью платиновой проволоки. При этом разложении наблюдался ряд блестящих явлений. Кали оказалось очень хорошим проводником, и до тех пор, пока цепь не была разомкнута, у отрицательной проволоки был виден чрезвычайно интенсивный свет и колонна пламени, которая, по-видимому, находилась в связи с выделением горючего вещества и подымалась над точкой соприкосновения проволоки с кали. Когда порядок соединения был обращен так, что платиновая ложечка была сделана отрицательной, яркое и постоянное свечение возникло у противоположной точки; явлений воспламенения вокруг нее не наблюдалось, но шарики (это металлический калий), напоминающие пузырьки газа, поднимались в кали и вспыхивали при соприкосновении с воздухом. Платина, как и можно было ожидать, была заметно разъедена, и особенно сильно после соединения ее с отрицательным полюсом. Щелочь в этих опытах оставалась сухой, и представлялось вероятным, что горючее вещество происходило вследствие ее разложения.». [24].
В 1807 году англичанин Дэви с помощью электрического разложения открыл металлический
1809 г. Земмеринг
В 1809 году, 22 июля, немецкий анатом
Рис 9. Макет телеграфа Земмеринга по [44]
1811 г. Дэви, Пуассон
В 1811 году Хэмфри Дэви стал в своих опытах использовать большую батарею Королевского института из 2000 элементов, в том числе он обнаружил, что между двумя полюсами с угольными электродами возникает электрическая дуга, которая производит свет. В работе 1812 года Дэви писал: «при удалении полюсов на 6—7 дюймов разряды происходили в виде необычайно красивой пурпурной струи свет
а». Открытие Дэви светового действия электрической дуги особого общественного внимания не вызвало, в этом смысле повторилась история русского профессора Петрова (см. 1803 год.). [11].В 1811 году профессор Парижского университета
Рис 10. Уравнение Пуассона для точечного заряда.