Читаем Популярно о конечной математике и ее интересных применениях в квантовой теории полностью

Dear Dr. Lahee,

Please consider my monograph proposal. The monograph will be based on my paper https://arxiv.org/abs/1104.4647 which contains 259 pages. Probably the final version will be longer but not considerably. The title of the monograph is:

Finite Quantum Theory and Applications to Gravity and Particle Theory and the abstract is:

We argue that the main reason of crisis in quantum theory is that nature, which is fundamentally discrete and even finite, is described by continuous mathematics. Moreover, the ultimate physical theory cannot be based on continuous mathematics because it has its own foundational problems which cannot be resolved (as follows, in particular, from Gödel's incompleteness theorems). In the first part of the work we discuss inconsistencies in standard quantum theory and reformulate the theory such that it can be naturally generalized to a formulation based on finite mathematics. It is shown that: a) as a consequence of inconsistent definition of standard position operator, predictions of the theory contradict the data on observations of stars; b) the cosmological acceleration and gravity can be treated simply as kinematical manifestations of de Sitter symmetry on quantum level (i.e. for describing those phenomena the notions of dark energy, space-time background and gravitational interaction are not needed). In the second part we consider a quantum theory based on finite mathematics with a large characteristic p. In this approach the de Sitter gravitational constant depends on p and disappears in the formal limit p→∞, i.e. gravity is a consequence of finiteness of nature. The application to particle theory gives that: a) the electric charge and the baryon and lepton quantum numbers can be only approximately conserved (i.e. the notion of a particle and its antiparticle is only approximate); b) particles which in standard theory are treated as neutral (i.e. coinciding with their antiparticles) cannot be elementary. We consider a possibility that only Dirac singletons can be true elementary particles. Finally we discuss a conjecture that classical time t manifests itself as a consequence of the fact that p changes, i.e. p and not t is the true evolution parameter.

The monograph will be based on my results published in:

[1] F. M. Lev, Some Group-theoretical Aspects of SO(1,4)-Invariant Theory. J. Phys., A21, 599–615 (1988).

[2] F. Lev, Representations of the de Sitter Algebra Over a Finite Field and Their Possible Physical Interpretation. Yad. Fiz., 48, 903–912 (1988).

[3] F. Lev, Modular Representations as a Possible Basis of Finite Physics. J. Math. Phys., 30, 1985–1998 (1989).

[4] F. Lev, Finiteness of Physics and its Possible Consequences. J. Math. Phys., 34, 490–527 (1993).

[5] F. Lev, Exact Construction of the Electromagnetic Current Operator in Relativistic Quantum Mechanics. Ann. Phys. 237, 355–419 (1995).

[6] F. M. Lev, The Problem of Interactions in de Sitter Invariant Theories. J. Phys., A32, 1225–1239 (1999).

[7] F. Lev, Massless Elementary Particles in a Quantum Theory over a Galois Field. Theor. Math. Phys., 138, 208–225 (2004). The journal is published by Springer.

[8] F. M. Lev, Could Only Fermions Be Elementary? J. Phys., A37, 3287–3304 (2004).

[9] F. Lev, Why is Quantum Theory Based on Complex Numbers? Finite Fields and Their Applications, 12, 336–356 (2006).

[10] F. M. Lev, Quantum Theory and Galois Fields, International J. Mod. Phys. B20, 1761–1777 (2006).

[11] F. M. Lev, Positive Cosmological Constant and Quantum Theory. Symmetry 2(4), 1401–1436 (2010).

[12] F. M. Lev, Introduction to a Quantum Theory over a Galois Field. Symmetry 2(4), 1810–1845 (2010).

[13] F. M. Lev, Is Gravity an Interaction? Physics Essays, 23, 355–362 (2010).

[14] F. Lev, Do We Need Dark Energy to Explain the Cosmological Acceleration? J. Mod. Phys. 9A, 1185–1189 (2012).

[15] F. Lev, de Sitter Symmetry and Quantum Theory. Phys. Rev. D85, 065003 (2012).

[16] F. M. Lev, A New Look at the Position Operator in Quantum Theory. Physics of Particles and Nuclei, 46, 24–59 (2015). The journal is published by Springer.

[17] F. M. Lev, Why Finite Mathematics Is The Most Fundamental and Ultimate Quantum Theory Will Be Based on Finite Mathematics. Physics of Elementary Particles and Atomic Nuclei Letters, 14, 77–82 (2017). The journal is published by Springer.

[18] F. M. Lev, Fundamental Quantal Paradox and its Resolution. Physics of Elementary Particles and Atomic Nuclei Letters, 14, 444–452 (2017). The journal is published by Springer.

and possibly in other journals.

I graduated from the Moscow Institute for Physics and Technology, got a PhD from the Institute of Theoretical and Experimental Physics in Moscow and a Dr. Sci. degree from the Institute for High Energy Physics (also known as the Serpukhov Accelerator). In Russia there are two doctoral degrees; Dr. Sci. degree is probably an analog of Habilitationsschrift in Germany. In Russia I worked at the Joint Institute for Nuclear Research (Dubna, Moscow region) and now I work at a software company in Los Angeles, USA.

I have many papers published in known journals (Ann. Phys., Few Body Systems, J. Math. Phys., J. Phys. A, Nucl. Phys. C, Phys. Rev. C and D, Phys. Rev. Letters and others). The majority of those papers are done in the framework of more or less mainstream approaches. On the other hand, the proposed monograph will be done in the fully new approach which I am working on for many years. In this approach quantum theory is based on finite mathematics.

I think that the main problems in convincing physicists that ultimate quantum theory will be based on finite mathematics are not scientific but subjective. First of all, the majority of physicists do not have even a very basic knowledge in finite mathematics. This is not a drawback because everybody knows something and does not know something and it is impossible to know everything. However, many physicists have a mentality that only their vision of physics is correct, they do not accept that different approaches should be published and if they do not understand something or something is not in the spirit of their dogmas then this is pathology or exotics which has nothing to do with physics.

Probably this situation has happened in view of several reasons. For example, the successes of QED at the end of the 40th were very impressive and it is of course impressive that the theory gives correct eight digits for the electron and muon magnetic moments and five digits for the Lamb shift. From mathematical point of view QED has several inconsistencies the reasons of which are clear. The above famous results are obtained by subtracting infinities from each other. However, in view of these and other results the mentality of the majority of physicists is that agreement with the data is much more important than mathematical consistency and many of those physicists believe that all fundamental problems of quantum theory can be solved in the framework of QFT or string theory (which has similar mathematical inconsistencies).

The meaning of «quantum» is discrete and historically the name «quantum theory» has arisen because it was realized that some physical quantities have discrete spectrum. The founders of quantum theory were highly educated physicists but they used only standard continuous mathematics, and even now discrete and finite mathematics is not a part of standard mathematical education at physics departments. Several famous physicists (e.g. Schwinger, Wigner, Nambu, Gross and others) discussed a possibility that ultimate quantum theory will be based on finite mathematics. One of the reasons is that in this case infinities cannot exist in principle. However, standard quantum theory is based on continuous mathematics. Efforts of many physicists to resolve fundamental difficulties of this theory (e.g. existence of infinities) have not been successful so far. Continuous mathematics describes many data with high accuracy but this does not necessarily imply that ultimate quantum theory will be based on continuous mathematics. For example, classical mechanics describes many data with high accuracy but fails when v/c is not small. Continuous mathematics is not natural in quantum theory. For example, the notions of infinitely small and infinitely large have arisen when people did not know about atoms and elementary particles and believed that any object can be divided by any number of parts. Ultimate quantum theory cannot be based on continuous mathematics because the latter has its own foundational problems (as follows, for example, from Gödel’s incompleteness theorems).

Moreover, as explained, for example, in Ref. [17], continuous mathematics itself is a special degenerated case of finite mathematics: the latter becomes the former in the formal limit when the characteristic of the ring or field in finite mathematics goes to infinity. The fact that continuous mathematics describes many data with high accuracy is a consequence of the fact that at the present stage of the Universe the characteristic is very large. There is no doubt that the technique of continuous mathematics is useful in many practical calculations with high accuracy. However, from the above facts it is clear that the problem of substantiation of this mathematics (which was discussed by many famous mathematicians, which has not been solved so far and which probably cannot be solved (e.g. in view of Gödel’s incompleteness theorems)) is not fundamental because continuous mathematics itself, being a special degenerated case of finite mathematics, is not fundamental.

It is also seeming obvious that discrete spectrum is more general than continuous one: the latter can be treated as a formal degenerated special case of the former in a special case when the distances between the levels of the discrete spectrum become (infinitely) small. In physics there are known examples in favor of this point of view. For example, the angular momentum has a pure discrete spectrum which becomes the continuous one in the formal limit ћ→0. Another example is the following. It is known that Poincare symmetry is a special degenerated case of de Sitter symmetry. The procedure when the latter becomes the former is called contraction and is performed as follows. Instead of some four de Sitter angular momenta MdS we introduce standard Poincare four-momentum P such that P= MdS/R where R is a formal parameter which can be called the radius of the world. The spectrum of the operators MdS is discrete, the distances between the spectrum eigenvalues are of the order of ћ and therefore at this stage the Poincare four-momentum P has the discrete spectrum such that the distances between the spectrum eigenvalues are of the order of ћ/R. In the formal limit R→∞ the commutation relations for the de Sitter algebras become the commutation relations for the Poincare algebra and instead of the discrete spectrum for the operators MdS we have the continuous spectrum for the operators P.

I fully agree with Dirac who wrote:

“I learned to distrust all physical concepts as a basis for a theory. Instead one should put one's trust in a mathematical scheme, even if the scheme does not appear at first sight to be connected with physics. One should concentrate on getting an interesting mathematics."

I understand these words such that on quantum level the usual physical intuition does not work, and we can rely only on mathematics. The majority of physicists do not accept this approach and believe that physical meaning (which often is understood simply as common sense) is more important than mathematics. In discussions with me some of them said that the characteristic p in my approach is simply a cutoff parameter. This is an example when finite mathematics is treated in view of continuous mathematics while finite mathematics considerable differs from continuous one. For example, special relativity cannot be treated simply as classical mechanics with the cutoff c for velocities.

As shown in my works, the approach when quantum theory is based on finite mathematics sheds a fully new light on fundamental problems of gravity, particle theory and even mathematics itself. I would be very grateful if Springer accepts my monograph proposal.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии