Now, the volume Vol(
Now: the major physical characterisation of quantum theory is that the volume of the region
Vol(
per each degree of freedom. This is the most general and most important physical fact at the core of quantum theory. This implies that the number of possible values that any variable distinguishing points within the region
N<= Vol(R)/2πћ (3)
which is a finite number. That is, this variable can take discrete values only. If it wasn’t so, the value of the variable could distinguish arbitrary small regions of phase space, contradicting (2). In particular: any variable separating finite regions of phase space is necessarily discrete.
В этой выдержке произносятся слова «discrete» и «finite». Вначале он говорит, что элемент фазового пространства имеет ту же размерность, что и ћ. Это хорошо известно, хотя, как я писал выше, довольно странно выражать ћ через классические размерности. А дальше он говорит, что число состояний удовлетворяет условию (3). В квантовой механике есть хорошо известное (и описанное в учебниках) правило Бора-Зоммерфельда, что когда квазиклассическая частица совершает финитное движение, то число состояний
Но в любом случае, это правило получено в стандартной квантовой механике, где координаты и импульсы непрерывны. В квантовой механике часто возникает дискретный спектр (отсюда и название "квантовая") потому что, как хорошо известно, некоторые операторы в Гильбертовом пространстве (например, угловой момент или энергия) могут иметь такой спектр. Но это не значит, что сама теория дискретна т.к. она основана на стандартной математике. Так что, по крайней мере в данном случае, слова о дискретности большого смысла не имеют и опять непонятно есть ли что-то более фундаментальное в его словах о дискретности.