Ситуация в звездах, масса которых превышает 1,4 массы Солнца, проходит по немного другому сценарию. Когда весь водород в ядре исчерпан, начинается превращение водорода в гелий в верхних слоях. А в ядре гелий превращается в углерод. В промежуточных слоях идет последовательное ядерное превращение более легких элементов в более тяжелые. В последней стадии ядро звезды состоит уже из железа, никеля и кобальта, а в слоях вокруг него идет ядерное горение кремния, неона, кислорода и гелия. Затем, достигая порога в 1,4 массы Солнца, ядро коллапсирует в нейтронную звезду. Все это происходит за считанные миллисекунды. Протоны соединяются с электронами и образуют нейтроны. Это ядро меняет размер с диаметра Земли до каких-нибудь 100 км в поперечнике. В момент, когда нейтроны внутри ядра достигают максимального сжатия, процесс останавливается. Ударные волны обрушиваются на падающий верхний материал, отсюда возникает энергия огромного количества частиц, называемых нейтрино, которая порождает взрыв верхних слоев, обнажая нейтронное ядро. Эти верхние слои разлетаются во все стороны с огромными скоростями. А ядро образует нейтронную звезду, плотность которой превосходит плотность воды в триллион раз! Нейтронная звезда совершает несколько оборотов в секунду, а магнитное поле в миллионы раз сильнее земного.
Особый вид нейтронных звезд – пульсары. Они могут излучать радиоволны, световые, рентгеновские и гамма-лучи.
Если масса нейтронной звезды превышает 2–3 массы Солнца, то она сжимается в черную дыру, сила тяготения которой не выпускает наружу даже свет. И внутри нее уже ничего не может остановить коллапс (сжатие) материи в бесконечно малую точку. Достоверно известно о существовании черных дыр, называемых A0620-00 и V-404 Лебедя, массы которых превышают массу Солнца в 16 и 6,3 раз соответственно.
Можно считать также, что вещество, отлетающее с планетарной туманности, и остатки от взрыва сверхновых образуют материал для образования новых звезд.
Схематично последовательность выглядит так:
Газообразная туманность → Протозвезда → Звезда типа Солнца → Красный гигант → Планетарная туманность → Белый карлик
Или так (если масса звезды превышает солнечную более чем 1,4 раз):
Газообразная туманность → Протозвезда → Массивная звезда → Красный сверхгигант → Сверхновая звезда → Нейтронная звезда → Черная дыра
Имеются и другие виды звезд: пульсирующие, неправильные, вспыхивающие звезды, двойные и тесные двойные звезды.
Во Вселенной существуют переменные звезды – звезды, блеск которых имеет свойство меняться. Количество света меняется оттого, что звезды пульсируют или выбрасывают облако вещества. Если система состоит из двух звезд, то одна может закрывать другую, отсюда изменение блеска.
Иногда звезда-сверхгигант может сбрасывать с себя слои углеродной сажи, что заслоняет обзор звезды и вызывает резкое падение ее блеска. На некоторых звездах, Проксиме Центавра, например, причиной солнечных вспышек может служить магнитное излучение.
Примерно половина всех звезд нашей галактики являются двойными, так что одна звезда вращается вокруг другой, за счет силы взаимного тяготения. Например, парные звёзды – Мицар и Мицар В, расположенные в Большой Медведице.
Если двойные звезды расположены близко друг к другу, то силы тяготения стремятся растянуть каждую из них в форму груши. Эти две грушеобразные фигуры образуют трехмерную восьмерку, которая называется полостью Роша. Ее поверхность представляет собой критическую границу роста одной из звезд. Если размер звезды достиг этой границы, то вещество начинает перетекать с одной звезды на другую в точке, где полости соприкасаются. В такие системы могут входить нейтронные звезды в паре с Голубым гигантом или Белым карликом.
Все звезды проходят спектральную классификацию. На основании качественного описания спектра можно сделать вывод о температуре поверхности, светимости и особенностях химического состава. Последовательность этих классов имеет вид O – B – A – F – G – K – M, где звезды класса О самые горячие, а остальные, по порядку, имеют более холодную температуру.
Созвездия
Современная астрономия поделила небесную сферу на участки для упрощенного ориентирования на звездном небе. В древности созвездиями назывались группы звезд, которые образовывали различные фигуры.
До 19-го века созвездия определялись не точно: некоторые звезды являлись частью сразу двух созвездий, а некоторые участки звездного неба вообще не входили ни в одно созвездие.
В начале 19-го века была попытка провести четкие линии между созвездиями, но общего мнения относительно расположения их на небосводе не было.
Решением Римской Генеральной ассамблеи Международного астрономического союза в 1922 году были утверждены 88 созвездий, а пять лет спустя были проведены между ними четкие линии. Хотя эти линии могут не совпадать с нынешними из-за микронаклона земной оси.