Читаем Порядок из хаоса полностью

Почему Эйнштейн столь упорно противился введению необратимости в физику? Об этом можно лишь догадываться. Эйнштейн был очень одиноким человеком. У него было мало друзей, мало сотрудников, мало студентов. Он жил в мрачную эпоху: две мировые войны, разгул антисемитизма. Неудивительно, что для Эйнштейна наука стала своего рода средством преодоления бурлящего потока времени. Сколь разителен контраст между установкой на «безвременную» науку и научными трудами самого Эйнштейна! Его мир полон наблюдателей-ученых, которые находятся в различных системах отсчета, движущихся относительно друг друга, или на различных звездах, отличающихся своими гравитационными полями. Все эти наблюдатели обмениваются информацией, передаваемой с помощью сигналов по всей Вселенной. Эйнштейна интересовал лишь объективный смысл этой коммуникации. Однако не будет преувеличением сказать, что Эйнштейн, по-видимому, был весьма близок к признанию тесной взаимосвязи между передачей сигналов и необратимостью. Коммуникация заложена в самой основе наиболее обратимого из процессов, доступных человеческому разуму, — прогрессивного роста знания.

3. Энтропийный барьер


В гл. 9 мы описали второе начало как принцип отбора: каждому начальному условию соответствует некоторая «информация». Допустимыми считаются все начальные условия, для которых эта информация конечна. Но для обращения времени необходима бесконечная информация; мы не можем создавать ситуации, которые переносили бы нас в прошлое! Чтобы предотвратить путешествия в прошлое, мы возвели энтропийный барьер.

Нельзя не отметить интересную аналогию между энтропийным барьером и представлением о скорости света как о максимальной скорости передачи сигналов. Существование предельной скорости распространения сигналов — один из основных постулатов теории относительности Эйнштейна (см. гл. 7). Такой барьер необходим для придания смысла причинности. Предположим, что мы покинули бы Землю на фантастическом космическом корабле, способном развивать сверхсветовую скорость. Тогда мы смогли бы обгонять световые сигналы и тем самым переноситься в свое собственное прошлое. Энтропийный барьер также необходим для того, чтобы придать смысл передаче сигналов. Мы уже упоминали о том, что необратимость и передача сигналов тесно связаны между собой. Норберт Винер убедительно показал, к каким ужасным последствиям привело бы существование двух направлений времени. Следующий отрывок из знаменитой «Кибернетики» Винера заслуживает того, чтобы привести его:

«Очень интересный мысленный опыт — вообразить разумное существо, время которого течет в обратном направлении по отношению к нашему времени. Для такого существа никакая связь с нами не была бы возможна. Сигнал, который оно послало бы нам, дошел бы к нам в логическом потоке следствий — с его точки зрения — и причин — с нашей точки зрения. Эти причины уже содержались в нашем опыте и служили бы естественным объяснением его сигналов без предположения о том, что разумное существо послало сигнал. Если бы оно нарисовало нам квадрат, остатки квадрата представились бы предвестником последнего и квадрат казался бы любопытной кристаллизацией этих остатков, всегда вполне объяснимой. Его значение казалось бы столь же случайным, как те лица, которые представляются при созерцании гор и утесов. Рисование квадрата показалось бы катастрофической гибелью квадрата — внезапной, но объяснимой естественными законами. У этого существа были бы такие же представления о нас. Мы можем, сообщаться только с мирами, имеющими такое же направление времени»[249].

Именно энтропийный барьер гарантирует единственность направления времени, невозможность изменить ход времени с одного направления на противоположное.

На страницах нашей книги мы неоднократно обращали внимание на важность доказательства несуществования. Эйнштейн первым осознал важность такого рода доказательства, положив в основу понятия относительной одновременности невозможность передачи информации со скоростью, большей, чем скорость света. Вся теория относительности строится вокруг исключения «ненаблюдаемых» одновременностей. Эйнштейн усматривал в этом шаге аналогию с запретом вечного двигателя в термодинамике. Однако некоторые современники Эйнштейна, например Гейзенберг, указывали на важное различие между несуществованием вечного двигателя и невозможностью передачи сигналов со сверхсветовыми скоростями. В термодинамике речь идет об утверждении, что некоторая ситуация не встречается в природе; в теории относительности утверждается невозможность некоторого наблюдения, т. е. своего рода диалога, коммуникации между природой и тем, кто ее описывает. Воздвигнув квантовую механику на основе запрета всего, что квантовый принцип неопределенности определяет как ненаблюдаемое, Гейзенберг считал себя следующим примеру Эйнштейна, несмотря на скептицизм, с которым Эйнштейн встретил квантовую механику.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука