Читаем Порядок из хаоса полностью

Немало страниц нашей книги посвящено классической механике. Мы считаем, что она представляет собой «наблюдательный пункт», из которого особенно удобно следить за трансформацией, переживаемой современной наукой. В классической динамике особенно ярко и четко запечатлен статический взгляд на природу. Время низведено до роли параметра, будущее и прошлое эквивалентны. Квантовая механика подняла много новых проблем, не затронутых классической динамикой, но сохранила целый ряд концептуальных позиций классической динамики, в частности по кругу вопросов, относящихся ко времени и процессу.

Первые признаки угрозы грандиозному ньютоновскому построению появились еще в начале XIX в. — в период торжества классической науки, когда ньютоновская программа занимала господствующее положение во французской науке, а та в свою очередь доминировала в Европе. Во второй части нашей книги мы проследим за развитием науки о теплоте — сопернице ньютоновской теории тяготения, начиная с первой «перчатки», брошенной классической динамике, когда Фурье сформулировал закон теплопроводности. Теория Фурье была первым количественным описанием явления, немыслимого в классической динамике, — необратимого процесса.

Два потомка теории теплоты по прямой линии — наука о превращении энергии из одной формы в другую и теория тепловых машин — совместными усилиями привели к созданию первой «неклассической» науки — термодинамики. Ни один из вкладов в сокровищницу науки, внесенных термодинамикой, не может сравниться по новизне со знаменитым вторым началом термодинамики, с появлением которого в физику впервые вошла «стрела времени». Введение односторонне направленного времени было составной частью более широкого движения западноевропейской мысли. XIX век по праву может быть назван веком эволюции: биология, геология и социология стали уделять в XIX в. все большее внимание изучению процессов возникновения новых структурных элементов, увеличения сложности. Что же касается термодинамики, то в основе ее лежит различие между двумя типами процессов: обратимыми процессами, не зависящими от направления времени, и необратимыми процессами, зависящими от направления времени. С примерами обратимых и необратимых процессов мы познакомимся в дальнейшем. Понятие энтропии для того и было введено, чтобы отличать обратимые процессы от необратимых: энтропия возрастает только в результате необратимых процессов.

На протяжении XIX в. в центре внимания находилось исследование конечного состояния термодинамической эволюции. Термодинамика XIX в, была равновесной термодинамикой. На неравновесные процессы смотрели как на второстепенные детали, возмущения, мелкие несущественные подробности, не заслуживающие специального изучения. В настоящее время ситуация полностью изменилась. Ныне мы знаем, что вдали от равновесия могут спонтанно возникать новые типы структур. В сильно неравновесных условиях может совершаться переход от беспорядка, теплового хаоса, к порядку. Могут возникать новые динамические состояния материи, отражающие взаимодействие данной системы с окружающей средой. Эти новые структуры мы назвали диссипативными структурами, стремясь подчеркнуть конструктивную роль диссипативных процессов в их образовании.

В нашей книге приведены некоторые из методов, разработанных в последние годы для описания того, как возникают и эволюционируют диссипативные структуры. При изложении их мы впервые встретимся с такими ключевыми словами, как «нелинейность», «неустойчивость», «флуктуация», проходящими через всю книгу, как лейтмотив. Эта триада начала проникать в наши взгляды на мир и за пределами физики и химии.

При обсуждении противоположности между естественными и гуманитарными науками мы процитировали слова Исайи Берлина. Специфичное и уникальное Берлин противопоставлял повторяющемуся и общему. Замечательная особенность рассматриваемых нами процессов заключается в том, что при переходе от равновесных условий к сильно неравновесным мы переходим от повторяющегося и общего к уникальному и специфичному. Действительно, законы равновесия обладают высокой общностью: они универсальны. Что же касается поведения материи вблизи состояния равновесия, то ему свойственна «повторяемость». В то же время вдали от равновесия начинают действовать различные механизмы, соответствующие возможности возникновения диссипативных структур различных типов. Например, вдали от равновесия мы можем наблюдать возникновение химических часов — химических реакций с характерным когерентным (согласованным) периодическим изменением концентрации реагентов. Вдали от равновесия наблюдаются также процессы самоорганизации, приводящие к образованию неоднородных структур — неравновесных кристаллов.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука