Читаем Порядок из хаоса полностью

Экспериментальная процедура может становиться и орудием чисто теоретического анализа. Эта ее разновидность известна под названием «мысленного эксперимента»: физик мысленно представляет себе экспериментальные ситуации, целиком подчиняющиеся теоретическим принципам, и тем самым получает возможность осознать, к каким следствиям приводят выбранные им в данной ситуации теоретические принципы. Мысленные эксперименты сыграли решающую роль в работах Галилея. Ныне они находятся в самом центре исследования последствий концептуальных переворотов в современной физике, произведенных теорией относительности и квантовой механикой. Один из наиболее знаменитых мысленных экспериментов был предложен Эйнштейном (так называемый «поезд Эйнштейна»). Представим себе наблюдателя, едущего в поезде и измеряющего скорость света, испускаемого фонарями на обочине дороги, т. е. движущегося со скоростью с в системе отсчета, относительно которой поезд движется со скоростью v. По классической теореме сложения скоростей наблюдатель, едущий в поезде, должен был бы приписать свету, распространяющемуся в направлении движения поезда, скорость с—v. Однако классические рассуждения содержат явную нелепость, выявить которую и должен предложенный Эйнштейном мысленный эксперимент. В теории относительности скорость света выступает как универсальная постоянная природы. В любой инерциальной системе отсчета скорость света всегда одна и та же. С тех пор и поныне «поезд Эйнштейна» безостановочно движется, помогая исследовать физические следствия глубоких перемен в основах науки, вызванных специальной теорией относительности.

Экспериментальный метод занимает центральное место в диалоге с природой, начатом современной наукой. Представление о природе, вопрошаемой в такой манере, разумеется, сильно упрощено, а порой и искажено. Однако это отнюдь не лишает экспериментальный метод способности опровергать подавляющее большинство выдвигаемых нами гипотез. Эйнштейн говорил, что природа отвечает «нет» на большинство задаваемых ей вопросов и лишь изредка от нее можно услышать более обнадеживающее «может быть». Ученый не может действовать так, как ему заблагорассудится, и заставить природу говорить лишь то, что ему хочется услышать. Строя радужные надежды и ожидания, он не может рассчитывать (по крайней мере если говорить о глобальной тенденции) на «поддержку» со стороны природы. В действительности ученый подвергает себя тем большему риску и ведет тем более опасную игру, чем более искусную тактику он выбирает, стремясь отрезать природе все пути к отступлению, припереть ее к стенке[52]. Каков бы ни был ответ природы — «да» или «нет», — он будет выражен на том же теоретическом языке, на котором был задан вопрос. Однако язык этот не остается неизменным, он претерпевает сложный процесс исторического развития, учитывающий прошлые ответы природы и отношения с другими теоретическими языками. Кроме того, в каждый исторический период научные интересы меняются и возникают новые вопросы. Все это приводит к сложной взаимосвязи между специфическими правилами научной игры (в частности, экспериментальным методом ведения диалога с природой, налагающим наиболее жесткие ограничения на игру) и культурной сетью, к которой, иногда неосознанно, принадлежит ученый.

Мы считаем экспериментальный диалог неотъемлемым достижением человеческой культуры. Он дает гарантию того, что при исследовании человеком природы последняя выступает как нечто независимо существующее. Экспериментальный метод служит основой коммуникабельной и воспроизводимой природы научных результатов. Сколь бы отрывочно ни говорила природа в отведенных ей экспериментом рамках, высказавшись однажды, она не берет своих слов назад: природа никогда не лжет.

5. Миф у истоков науки


Основатели современной науки прозорливо усматривали в диалоге между человеком и природой важный шаг к рациональному постижению природы. Но претендовали они на гораздо большее. Галилей и те, кто пришел после него, разделяли убеждение в том, что наука способна открывать глобальные истины о природе. По их мнению, природа не только записана на математическом языке, поддающемся расшифровке с помощью надлежаще поставленных экспериментов, но и сам язык природы единствен. Отсюда уже недалеко до вывода об однородности мира и, следовательно, доступности постижения глобальных истин с помощью локального экспериментирования. Простейшие явления, изучаемые наукой, при таких взглядах становятся ключом к пониманию природы в целом. Сложность природы была провозглашена кажущейся, а разнообразие природы — укладывающимся в универсальные истины, воплощенные для Галилея в математических законах движения.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука