Рис. 46. Временная эволюция H-функции в эксперименте с обращением скоростей. В момент времени
Итак, мы получаем адекватное представление второго начала:
Нельзя не отметить еще одно важное обстоятельство: при
Предположим, что, прежде чем производить обращение скоростей, мы достаточно долго выжидаем. В этом случае послестолкновительные корреляции имели бы произвольный радиус и энтропийная цена за обращение скоростей была бы непомерно велика. А поскольку обращение скоростей стало бы нам «не по карману», его исключили бы. На физическом языке это означает, что второе начало запрещает устойчивые предстолкновительные корреляции на больших расстояниях.
Поразительна аналогия с макроскопическим описанием второго начала. Тепло и механическая энергия эквивалентны с точки зрения сохранения энергии (см. гл. 4 и 5), но отнюдь не второго начала. Кратко говоря, механическая энергия более «высокого сорта» (более когерентна), чем тепло, и всегда может быть превращена в тепло. Обратное неверно. Аналогичное различие существует на микроскопическом уровне между столкновениями и корреляциями. С точки зрения динамики столкновения и корреляции эквивалентны. Столкновения порождают корреляции, а корреляции могут разрушать последствия столкновений. Но между столкновениями и корреляциями имеется существенное различие. Мы можем управлять столкновениями и порождать корреляции, но мы не в состоянии так управлять корреляциями, чтобы уничтожить последствия, вызванные столкновениями в системе. Этого существенного различия недостает в динамике, но его можно учесть в термодинамике. Следует заметить, что термодинамика нигде не вступает в конфликт с динамикой. Термодинамика вносит важный дополнительный элемент в наше понимание физического мира.
8. Энтропия как принцип отбора
Нельзя не удивляться тому, как сильно микроскопическая теория необратимых процессов напоминает традиционную макроскопическую теорию. И в той, и в другой теории энтропия имеет негативный аспект. В макроскопической теории энтропия запрещает некоторые процессы, например перетекание тепла от холодного предмета к теплому. В микроскопической теории энтропия запрещает некоторые классы начальных условий. Различие между тем, что запрещено, и тем, что разрешено, поддерживается во времени законами динамики. Из негативного аспекта возникает позитивный: существование энтропии вместе с ее вероятностной интерпретацией. Необратимость не возникает более, как чудо, на некотором макроскопическом уровне. Макроскопическая необратимость лишь делает зримой ориентированную во времени поляризованную природу того мира, в котором мы живем.
Как мы уже неоднократно подчеркивали, в природе существуют системы с обратимым поведением, допускающие полное описание в рамках законов классической или квантовой механики. Но большинство интересующих нас систем, в том числе все химические и, следовательно, все биологические системы, ориентировано во времени на макроскопическом уровне. Их отнюдь не иллюзорная однонаправленность во времени отражает нарушение временной симметрии на микроскопическом уровне. Необратимость существует либо на
Мы также неоднократно отмечали, что необратимость является исходным пунктом других нарушений симметрии. Например, по общему мнению, различие между частицами и античастицами могло возникнуть только в неравновесном мире. Это утверждение может быть распространено на многие другие ситуации. Вполне вероятно, что с необратимостью через отбор подходящей бифуркации связана и киральная симметрия. Многие из активно проводимых ныне исследований посвящены выяснению того, каким образом необратимость можно «вписать» в структуру материи.