пар и тем самым понижающего давление». И как знать, умей мы открывать этот клапан пошире и в любое время, может и удалось бы остановить трещину легко и просто. Например, мы резко понизили сопротивление пластической деформации в вершине трещины. Как это сделать? А вот так, к примеру: взяли и нагрели окрестности трещины. Чем? Это разговор особый, и мы к нему вернемся. Важно, что с повышением температуры металл деформируется намного легче. Ведь не случайно же его прокатывают и куют в раскаленном состоянии! Ясно, что при этом течение в вершине трещины пойдет намного быстрее. Большое количество упругой энергии будет растрачено, и разрушение отодвинется во времени.
Есть ли какие-нибудь шансы использовать пластическую деформацию на закритическом этапе жизни трещины? Есть, но мало. И вот почему. При высоких скоростях разрушения пластичность подавляется – она просто не успевает осуществиться: слишком мало времени предоставляется дислокационным источникам пока мимо них бежит трещина. Поэтому пластическая деформация сосредоточена по тончайшим кромкам трещины (не толще десятков микрон). Вот, если бы удалось получить такие материалы, в которых дислокационные источники были совершенно свободными, не заблокированными примесями… И если бы удалось сделать их совершенно раскрепощенными и способными генерировать дислокации моментально и в большом количестве… И если бы эти источники начинали работать не при определенном, а при любых, как угодно малых напряжениях, чтобы они могли функционировать и далеко от берегов трещины… Вот тогда бы… Но не слишком ли много «если бы»? Сегодняшняя реальность такова, что надеяться на мощную пластическую деформацию около закритической трещины, к сожалению, не приходится. Следовательно, если и рассчитывать на пластифицирование материалов, то только до появления трещины и на ранних докритичес-ких этапах ее роста. Потом это уже бесполезно.
Но неужели так уже все безнадежно? Нет, конечно, возможности есть и немалые. Представьте себе, что на пути трещины мы сознательно, еще при проектировании конструкции, а потом при ее изготовлении расположили мощное упругое поле сжатия. Никаких особенных проблем с его образованием нет. Как изготавливают предварительно напряженный железобетон? Растягивают на
простейших станках арматуру и в таком состоянии заливают бетоном. Когда бетон застывает, он оказывается сжатым, а арматура – растянутой. Трещиностойкость такого бетона, как известно, значительно выше, чем обычного. Примерно таким же образом можно поступить и с металлической конструкцией. Часть ее сжимается, на нее накладывают слой металла и проваривают или приклеивают. Тогда основной металл окажется сжатым, а накладка – стрингер – растянутой. Когда быстрая трещина вторгается в сжатую область, подталкивающая ее упругая энергия растяжения гасится на противоположном упругом поле сжатия, а разрушение, лишенное пищи, останавливается. Таким образом тормозят любые, в том числе закритические, трещины в судо- и самолетостроении.
Иногда на кораблях поступают и по-другому. На предполагаемом пути трещины вырезают паз. А сверху на него наклепывают стрингер. Такой барьер – совершенно непреодолимое препятствие для трещины. Правда, и этот, и предыдущий методы, останавливая трещину, сами вносят в конструкцию дефекты – и сварные швы, и отверстия. Но что же делать? Приходится из двух зол выбирать меньшее…
(И. Борисов)
«БУТЕРБРОД» ТОРМОЗИТ РАЗРУШЕНИЕ
…Секунды в бесконечность превращал…
В предыдущем разделе мы затронули проблему взаимодействия трещины со стрингером и пазом. В действительности, это лишь один из аспектов обширной темы-поведения трещины у границ. Читатель знает, что материалы, состоящие из разнородных слоев, называются композитами. По существу каждый композит похож на бутерброд. Но в отличие от обычного бутерброда, который должен быть съедобным, бутерброд – композит «обя-
зан» быть неудобоваримым для разрушения. Это заранее задуманный и «спроектированный» враг трещины. Иной раз он может и пожертвовать прочностью какого-нибудь из многих своих слоев, но рано или поздно на эту «приманку» обязательно попадется изловленная трещина. У трещины в этом случае тоже свое «кредо» – она почти всегда неравнодушна к границам сред с различными упругими характеристиками. Она может их «любить» или «ненавидеть», то есть проникать через них или не проникать, но она не бывает безразлична к ним.