Читаем Портрет трещины полностью

А пока, чтобы разобраться в существующих точках зрения на это явление, надо еще немного порассуждать, надо вооружиться тонким надежным скальпелем, прежде чем мы поймем, как же превратить вершину надреза в трещину, обойдя или использовав при этом пластическую деформацию.

Обратимся к тому, что представляет сущность чисто механического подхода к разрушению.

Стоит ли слишком категорично разделять концентратор напряжений и трещину? В конечном итоге они ведь различаются только тем, что в концентраторе вершина сравнительно тупая, а в трещине она невероятно остра и исчисляется стомиллионными долями сантиметра, то есть порядка межатомного расстояния. Меняется, таким образом, лишь масштаб концентрации напряжений, но не сама, по мнению механики, сущность процесса. Поэтому отнюдь не обязательно детально, на уровне поведения отдельных атомов, анализировать зарождение исходной микротрещины на дне надреза.

Ну, а как быть при таком подходе с ролью пластической деформации? Ответ прост: не надо драматизировать! Да, пластическая деформация существует; да, она предшествует разрушению. Ее роль? Пожиратель энергии, нагнетаемой внешней нагрузкой в тело. Если разрушения нет, вся энергия идет на деформирование. Если разрушение уже действует, то лишь часть внешней энергии идет на его развитие, а вторая – на деформирование. В последнем случае разрушение происходит под

аккомпанемент пластического течения, так сказать под сурдинку.

В таком подходе много недостатков. В нем нет ответа на извечные вопросы: почему и как образовалась трещина из концентратора, как связана пластическая деформация с разрушением физически, какова структура материала в зоне зарождения трещины и многие другие. Но вместе с тем подход этот отличается и уникальными достоинствами. Он позволяет рассчитать реальные виды разрушения именно потому, что пренебрегает тонкими структурными деталями, численная оценка которых всегда трудна. Ясно, что рассчитать любое механическое устройство гораздо проще, чем сложнейшие процессы атомного масштаба.

Едва ли не самым ярким примером такого подхода к оценке прочности материала явилась теория, предложенная английским инженером, а впоследствии авиаконструктором А. Гриффитсом. Он обратил внимание на то, что реальная прочность конструкций всегда ниже той, которую можно было бы от нее ожидать. Это явление он объяснил так: каким бы монолитным не казался металл извне, он содержит в себе трещины. Откуда они? Какова их природа? На эти вопросы Гриффите ответов не нашел, да, вероятно, и не искал их. Они пришли позднее, через 30-40 лет и найдены были другими исследователями. Но в главном, и это потом было подтверждено физиками многократно, Гриффите был прав: металл действительно содержит трещины самых разных размеров и нередко очень опасных. Эти трещины, как болезни, развиваясь, сокращали жизнь деталей, обрекая их на преждевременную кончину.

В чем же состоит механизм их влияния на прочность?

В конечном итоге все сводится к той же концентрации напряжений. Допустим, в куске металла есть большая трещина. Она, естественно, уменьшает сечение, сопротивляющееся приложенной нагрузке, и на оставшееся тело материала действуют большие напряжения. Дело, однако, столь простым случаем не ограничивается. Даже, если бы пластина металла была бесконечно велика, все равно в вершине трещины напряжения как бы аккумулируются и способны в несколько раз, а иногда, как мы уже говорили, на много порядков превышать их средние значения. Это происходит в объеме металла

примерно того же размера, что и размер трещины. Интересную форму имеет область, в которой эти напряжения накапливаются – что-то вроде ушей по обе стороны вершины трещины. В этих «ушах» скапливается большая упругая энергия, стремящаяся разорвать металл. И если трещина находится в напряженном металле, она всегда с «ушами». Она может ими даже «хлопать» – при изменении режима ее роста или когда трещина располагается на границе между двумя различными слоями в композитном материале. Это означает изменение распределения напряжений в окрестностях вершины трещины. Об ушной проблеме „читателю уже известно больше того, что знал в свое время Гриффите. Экспериментально и теоретически такое распределение напряжений было подтверждено лишь через 15-20 лет после работ Гриффитса. И тем не менее Гриффите нашел в принципе правильный ответ, хотя и исходил из того, что сконцентрированное упругое поле как бы окружает всю трещину. Когда-то знаменитый физик Р. Вуд писал,

что в молодости, начиная читать лекцию по физике, он был впереди студентов на два часа, а к концу лекции их знания сравнивались. Но эти исторические «два часа», отделившие Гриффитса от современников, и позволили ему обессмертить свою идею.

Перейти на страницу:

Похожие книги

Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука
Квантовые миры и возникновение пространства-времени
Квантовые миры и возникновение пространства-времени

Надеемся, что отсутствие формул в книге не отпугнет потенциальных читателей.Шон Кэрролл – физик-теоретик и один из самых известных в мире популяризаторов науки – заставляет нас по-новому взглянуть на физику. Столкновение с главной загадкой квантовой механики полностью поменяет наши представления о пространстве и времени.Большинство физиков не сознают неприятный факт: их любимая наука находится в кризисе с 1927 года. В квантовой механике с самого начала существовали бросающиеся в глаза пробелы, которые просто игнорировались. Популяризаторы постоянно твердят, что квантовая механика – это что-то странное, недоступное для понимания… Чтобы все встало на свои места, достаточно признать, что во Вселенной мы существуем не в одном экземпляре. Шонов Кэрроллов бесконечно много. Как и каждого из нас.Тысячи раз в секунду во Вселенной возникают все новые и новые наши копии. Каждый раз, когда происходит квантовое событие, мир дублируется, создавая копию, в которой квантовое событие так и не произошло.В квантовой механике нет ничего мистического или необъяснимого. Это просто физика.В формате PDF A4 сохранён издательский дизайн.

Шон Б. Кэрролл , Шон Майкл Кэрролл

Физика / Зарубежная образовательная литература / Образование и наука